Summary We developed an RNA sequencing-based pipeline to discover differentially expressed cell surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. Additionally, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2 directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target.
Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines. Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used neuroblastoma cell lines. These data can be used to perform differential expression analysis based on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation). Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional targets as well as regulatory (enhancer or repressor) elements in neuroblastoma.
High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator (MR) proteins that were conserved across independent cohorts. A 10–protein transcriptional module – centered around a TEAD4 ↔ MYCN positive-feedback loop – emerged as the regulatory driver of the high-risk subtype associated with MYCN amplification. Silencing of either gene collapsed MYCN-amplified (MYCNAmp) neuroblastoma transcriptional hallmarks and abrogated viability in vitro and in vivo. Consistently, TEAD4 emerged as a robust prognostic marker of poor survival, with activity independent of the canonical Hippo pathway transcriptional co-activators, YAP and TAZ. These results suggest novel therapeutic strategies for the large subset of MYCN deregulated neuroblastomas.
Mortality from tobacco smoking remains the leading cause of preventable death in the world, yet current cessation therapies are only modestly successful, suggesting new molecular targets are needed. Genetic analysis of gene expression and behavior identified Chrna7 as potentially modulating nicotine place conditioning in the BXD panel of inbred mice. We used gene targeting and pharmacological tools to confirm the role of Chrna7 in nicotine CPP. To identify molecular events downstream of Chrna7 that may modulate nicotine preference, we performed microarray analysis of α7 KO and WT nucleus accumbens tissue, followed by confirmation with quantitative PCR and immunoblotting. In the BXD panel, we found a putative cis eQTL for Chrna7 in nucleus accumbens that correlated inversely to nicotine CPP. We observed that gain-of-function α7 mice did not display nicotine preference at any dose tested, while conversely, α7 KO mice showed nicotine place preference at a dose below that routinely required to produce preference. In B6 mice, the α7 nAChR-selective agonist, PHA-543613, dose-dependently blocked nicotine CPP, which was restored using the α7 nAChR-selective antagonist, MLA. Our genomic studies implicated an mRNA co-expression network regulated by Chrna7 in nucleus accumbens. Mice lacking Chrna7 demonstrate increased insulin signaling in the nucleus accumbens, which may modulate nicotine place preference. Our studies provide novel targets for future work on development of more effective therapeutic approaches to counteract the rewarding properties of nicotine for smoking cessation.
Enumeration-based determination of DNA copy-concentration was assessed through an international comparison among national metrology institutes (NMIs) and designated institutes (DIs). Enumeration-based quantification does not require a calibration standard thereby providing a route to "absolute quantification", which offers the potential for reliable value assignments of DNA reference materials, and International System of Units (SI) traceability to copy number 1 through accurate counting. In this study, 2 enumeration-based methods, flow cytometric (FCM) counting and the digital polymerase chain reaction (dPCR), were compared to quantify a solution of the pBR322 plasmid at a concentration of several thousand copies per microliter. In addition, 2 orthogonal chemical-analysis methods based on nucleotide quantification, isotope-dilution mass spectrometry (IDMS) and capillary electrophoresis (CE) were applied to quantify a more concentrated solution of the plasmid. Although 9 dPCR results from 8 laboratories showed some dispersion (relative standard deviation [RSD] = 11.8%), their means were closely aligned with those of the FCM-based counting method and the orthogonal chemical-analysis methods, corrected for gravimetric dilution factors. Using the means of dPCR results, the RSD of all 4 methods was 1.8%, which strongly supported the validity of the recent enumeration approaches. Despite a good overall agreement, the individual dPCR results were not sufficiently covered by the reported measurement uncertainties. These findings suggest that some laboratories may not have considered all factors contributing to the measurement uncertainty of dPCR, and further investigation of this possibility is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.