We report an inborn error of the tricarboxylic acid cycle, fumarase deficiency, in two siblings born to first cousin parents. They presented with progressive encephalopathy, dystonia, leucopenia, and neutropenia. Elevation of lactate in the cerebrospinal fluid and high fumarate excretion in the urine led us to investigate the activities of the respiratory chain and of the Krebs cycle, and to finally identify fumarase deficiency in these two children. The deficiency was profound and present in all tissues investigated, affecting the cytosolic and the mitochondrial fumarase isoenzymes to the same degree. Analysis of fumarase cDNA demonstrated that both patients were homozygous for a missense mutation, a G-955 -> C transversion, predicting a Glu-319 --Gln substitution. This substitution occurred in a highly conserved region of the fumarase cDNA. Both parents exhibited half the expected fumarase activity in their lymphocytes and were found to be heterozygous for this substitution. The present study is to our knowledge the first molecular characterization of tricarboxylic acid deficiency, a rare inherited inborn error of metabolism in childhood.
Dimethylglycine dehydrogenase (DMGDH) (E.C. number 1.5.99.2) is a mitochondrial matrix enzyme involved in the metabolism of choline, converting dimethylglycine to sarcosine. Sarcosine is then transformed to glycine by sarcosine dehydrogenase (E.C. number 1.5.99.1). Both enzymes use flavin adenine dinucleotide and folate in their reaction mechanisms. We have identified a 38-year-old man who has a lifelong condition of fishlike body odor and chronic muscle fatigue, accompanied by elevated levels of the muscle form of creatine kinase in serum. Biochemical analysis of the patient's serum and urine, using (1)H-nuclear magnetic resonance NMR spectroscopy, revealed that his levels of dimethylglycine were much higher than control values. The cDNA and the genomic DNA for human DMGDH (hDMGDH) were then cloned, and a homozygous A-->G substitution (326 A-->G) was identified in both the cDNA and genomic DNA of the patient. This mutation changes a His to an Arg (H109R). Expression analysis of the mutant cDNA indicates that this mutation inactivates the enzyme. We therefore confirm that the patient described here represents the first reported case of a new inborn error of metabolism, DMGDH deficiency.
Background: A38-year-old man presented with a history of fish odor (since age 5) and unusual muscle fatigue with increased serum creatine kinase. Our aim was to identify the metabolic error in this new condition. Methods: We used 1H NMR spectroscopy to study serum and urine from the patient. Results: The concentration of N,N-dimethylglycine (DMG) was increased ∼100-fold in the serum and ∼20-fold in the urine. The presence of DMG as a storage product was confirmed by use of 13C NMR spectroscopy and gas chromatography–mass spectrometry. The high concentration of DMG was caused by a deficiency of the enzyme dimethylglycine dehydrogenase (DMGDH). A homozygous missense mutation was found in the DMGDH gene of the patient. Conclusions: DMGDH deficiency must be added to the differential diagnosis of patients complaining of a fish odor. This deficiency is the first inborn error of metabolism discovered by use of in vitro 1H NMR spectroscopy of body fluids.
The ability for 18-day fetal rat hepatocytes in primary culture to modify extracellular amino acid concentrations was studied between 24 and 48 h of culture. Most of the 19 amino acids tested were found to be taken up by the hepatocytes. However, serine and glutamate appeared in the 24-hour-conditioned medium to be twice as concentrated as in the fresh medium. The profile of net consumption or production of amino acids was unchanged when the medium was supplemented with essential amino acids. The use of [U-14C]glucose revealed that serine released in the medium was mainly formed from glucose. The presence of insulin (10 mM) did neither significantly modify the variations of amino acid concentrations in the medium nor 2-amino[l-14C]isobutyric acid uptake by the cells, while the hormone produced a 2-fold increase in glycogen labeling from [U-14C]glucose. This study revealed that whatever the regulatory culture conditions considered a net serine production out of the cells occurred, which appears to be specific to the fetal stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.