SummaryNeurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disorder, affecting approximately 1 in 3500 individuals. The most commonly seen tumors in NF1 patients are the (sub)cutaneous neurofibromas. However, individuals with NF1 typically present in childhood with welldefined pigmentary defects, including café -au-lait macules (CALMs), intertriginous freckling and iris Lisch nodules. NF1 is considered a neurocristopathy, primarily affecting tissues derived from the neural crest. Since the pigment producing melanocyte originates in the neural crest, the presence of (hyper)pigmentary lesions in the NF1 phenotype because of changes in melanocyte cell growth and differentiation is to be expected. We want to discuss the pigmentary cutaneous manifestations of NF1 represented by CALMs and intertriginous freckles and the pigmentary non-cutaneous manifestations represented by iris Lisch nodules. Several hypotheses have been suggested in explaining the poorly understood etiopathogenesis of CALMs. Whether other pigmentary manifestations might share similar etiopathogenic mechanisms remains obscure. Additional attention will be drawn to a readily seen phenomenon in NF1: hyperpigmentation overlying (plexiform) neurofibromas, which could suggest common etiopathogenetic-environmental cues or mechanisms underlying CALMs and neurofibromas. Finally, we want to address the relationship between malignant melanoma and NF1.
The neurofibromatosis type 1 (NF1) gene product, neurofibromin, is known to interact with Ras, thereby negatively regulating its growth-promoting function. Although this is a well-established interaction, the discovery of other neurofibromin interacting partners could reveal new functional properties of this large protein. Using yeast two-hybrid analysis against a brain cDNA library, we identified a novel interaction between the amyloid precursor protein and the GTPase activating protein-related domain of neurofibromin. This interaction was further analyzed in human melanocytes and confirmed by immunoprecipitation and colocalization studies. In addition, we observed a colocalization of amyloid precursor protein and neurofibromin with melanosomes. Amyloid precursor protein has been proposed to function as a vesicle cargo receptor for the motor protein kinesin-1 in neurons. This colocalization of amyloid precursor protein and neurofibromin with melanosomes was lost in melanocytes obtained from normal skin of a NF1 patient. We suggest that a complex between amyloid precursor protein, neurofibromin, and melanosomes might be important in melanosome transport, which could shed a new light on the etiopathogenesis of pigment-cell-related manifestations in NF1.
One of the major primary features of the neurocutaneous genetic disorder Neurofibromatosis type 1 are the hyperpigmentary café-au-lait macules where disregulation of melanocyte biology is supposed to play a key etiopathogenic role. To gain better insight into the possible role of the tumor suppressor gene NF1, a transcriptomic microarray analysis was performed on human NF1 heterozygous (NF1+/-) melanocytes of a Neurofibromatosis type 1 patient and NF1 wild type (NF1+/+) melanocytes of a healthy control patient, both cultured from normally pigmented skin and hyperpigmented lesional café-au-lait skin. From the magnitude of gene effects, we found that gene expression was affected most strongly by genotype and less so by lesional type. A total of 137 genes had a significant twofold or more up- (72) or downregulated (65) expression in NF1+/- melanocytes compared with NF1+/+ melanocytes. Melanocytes cultured from hyperpigmented café-au-lait skin showed 37 upregulated genes whereas only 14 were downregulated compared with normal skin melanocytes. In addition, significant genotype xlesional type interactions were observed for 465 genes. Differentially expressed genes were mainly involved in regulating cell proliferation and cell adhesion. A high number of transcription factor genes, among which a specific subset important in melanocyte lineage development, were downregulated in the cis-regulatory network governing the activation of the melanocyte-specific dopachrome tautomerase (DCT) gene. Although the results presented have been obtained with a restricted number of patients (one NF1 patient and one control) and using cDNA microarrays that may limit their interpretation, the data nevertheless addresses for the first time the effect of a heterozygous NF1 gene on the expression of the human melanocyte transcriptome and has generated several interesting candidate genes helpful in elucidating the etiopathology of café-au-lait macules in NF1 patients.
VEGF and angiopoietin-2 (ANG2) have complementary roles in angiogenesis and promote an immunosuppressive tumor microenvironment. It is anticipated that combination of VEGF and ANG2 blockade could provide superior activity to blockade of either pathway alone, and that addition of VEGF/ANG2 inhibition to an anti-programmed cell death protein-1 (PD-1) antibody could change the tumor microenvironment to support T-cell-mediated tumor cytotoxicity. Here, we describe the pharmacologic and antitumor activity of BI 836880, a humanized bispecific nanobody TM comprising two single variable domains blocking VEGF and ANG2, and an additional module for half-life extension in vivo. BI 836880 demonstrated high affinity and selectivity for human VEGF-A and ANG2, resulting in inhibition of downstream signaling of VEGF/ANG2 and a decrease in endothelial cell proliferation and survival. In vivo, BI 836880 exhibited significant antitumor activity in all patient-derived xenograft models tested, showing significantly greater tumor growth inhibition (TGI) than bevacizumab (VEGF inhibition) and AMG386 (ANG1/2 inhibition) in a range of models. In a Lewis lung carcinoma syngeneic tumor model, combination of PD-1 inhibition with VEGF inhibition showed superior efficacy versus blockade of either pathway alone. TGI was further increased with addition of ANG2 inhibition to VEGF/PD-1 blockade. VEGF/ANG2 inhibition had a strong anti-angiogenic effect. Our data suggest that blockade of VEGF and ANG2 with BI 836880 may offer improved antitumor activity versus blockade of either pathway alone and that combining VEGF/ANG2 inhibition with PD-1 blockade can further enhance antitumor effects.
Significance statement (51/80 words)VEGF and ANG2 play key roles in angiogenesis and have an immunosuppressive effect in the tumor microenvironment. Here, we show that BI 836880, a bispecific nanobody TM targeting VEGF and ANG2, demonstrates substantial antitumor activity in preclinical models.Combining VEGF/ANG2 inhibition with blockade of the PD-1 pathway can further improve antitumor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.