The mechanical transmission of sound in the tympanal organ of adults and 5th instar larvae of Locusta migratoria and Schistocerca gregaria has been investigated by means of stroboscopic measurements within a frequency range from 1-20 kHz. Frequency dependent spatial distributions of amplitudes and phases of oscillation on the tympanal membrane and the Müller's organ could be demonstrated. Cuticular structures on the membrane may act as a lever arm (e.g. elevated process) and cause a transformation of the (unidimensional) membrane motion into components of displacements in the Müller's organ perpendicular, as well as even parallel, to the membrane. Sites of maximum relative displacements at distinct frequencies are found to be correlated to the course of the dendrites of the acoustic receptor cells. Differences in morphology of the tympanal organ between the two species as well as between adults and larvae always correspond to differences in the mechanical properties (resonances etc.). Consequently, differences or changes in the neurophysiological response characteristics of the different receptor cells have been found. Based upon these findings a correlation between the anatomical and physiological classification of the receptor cell groups is presented.
The linear-no-threshold (LNT) controversy covers much more than the mere discussion whether or not "the LNT hypothesis is valid". It is shown that one cannot expect to find only one or even the only one dose-effect relationship. Each element within the biological reaction chain that is affected by ionizing radiation contributes in a specific way to the final biological endpoint of interest. The resulting dose-response relationship represents the superposition of all these effects. Till now there is neither a closed and clear picture of the entirety of radiation action for doses below some 10 mSv, nor does clear epidemiological evidence exist for an increase of risk for stochastic effects, in this dose range. On the other hand, radiation protection demands for quantitative risk estimates as well as for practicable dose concepts. In this respect, the LNT concept is preferred against any alternative concept. However, the LNT concept does not necessarily mean that the mechanism of cancer induction is intrinsically linear. It could hold even if the underlying multi-step mechanisms act in a non-linear way. In this case it would express a certain "attenuation" of non-linearities. Favouring LNT against threshold-, hyper-, or sub-linear models for radiation-protection purposes on the one hand, but preferring one of these models (e.g. for a specific effect) because of biological considerations for scientific purposes on the other hand, does not mean a contradiction.
The radiation detriment in ICRP 103 is defined as the product of the organ-specific risk coefficient and the damage that may be associated with a cancer type or hereditary effect. This is used to indicate a weighted risk according to the radiation sensitivity of different organs and the severity of damage that may possibly arise. While the risk refers to radiation exposure parameters, the extent of damage is independent of radiation. The parameters that are not affected by radiation are lethality, impairment of quality of life, and reduced life expectancy, which are considered as quantities associated with the severity of disease or damage. The damage and thus the detriment appear to be mostly affected by lethality, which is the quotient of the age-standardized mortality rate to the incidence rate. The analysis of the detriment presented in this paper focuses on the influence of the lethality on the detriment from 1980 to 2012 in the USA and Germany. While the lethality in this period covering more than three decades has decreased approximately linearly by 30% (both USA and Germany), within the same period the detriment declined only by 13% in the USA and by 15% in Germany. If only based on these two countries, an update on the detriment parameters with reference to 2007, when ICRP 103 was released, would result in a reduced weighted risk, i.e. the radiation detriment would be reduced by 10 to 15% from originally 5.7% per Sv for the whole population to roughly 5% per Sv.
The purpose of the ICRP detriment concept is to enable a quantitative comparison of stochastic radiation damage for the various organs. For this purpose, the organ-specific nominal risk coefficients are weighted with a function that is intended to express the amount of damage or, respectively, the severity of a disease. This function incorporates a variety of variables that do not depend on radiation parameters, but on characteristics of the disease itself. The question is raised as to whether the rather subtle way of defining the amount of damage is necessary for radiation protection purposes and whether a much simpler relationship can serve for this purpose as well or even better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.