We identified a gene of the fungal pathogen Candida albicans, designated EFG1, whose high‐level expression stimulates pseudohyphal morphogenesis in the yeast Saccharomyces cerevisiae. In a central region the deduced Efg1 protein is highly homologous to the StuA and Phd1/Sok2 proteins that regulate morphogenesis of Aspergillus nidulans and S.cerevisiae, respectively. The core of the conserved region is homologous to the basic helix–loop–helix (bHLH) motif of eukaryotic transcription factors, specifically to the human Myc and Max proteins. Fungal‐specific residues in the bHLH domain include the substitution of an invariant glutamate, responsible for target (E‐box) specificity, by a threonine residue. During hyphal induction EFG1 transcript levels decline to low levels; downregulation is effected at the level of transcriptional initiation as shown by a EFG1 promoter–LAC4 fusion. A strain carrying one disrupted EFG1 allele and one EFG1 allele under the control of the glucose‐repressible PCK1 promoter forms rod‐like, pseudohyphal cells, but is unable to form true hyphae on glucose‐containing media. Overexpression of EFG1 in C.albicans leads to enhanced filamentous growth in the form of extended pseudohyphae in liquid and on solid media. The results suggest that Efg1p has a dual role as a transcriptional activator and repressor, whose balanced activity is essential for yeast, pseudohyphal and hyphal morphogenesis of C.albicans. Functional analogies between Efg1p and Myc are discussed.
SummaryProtein O -mannosyltransferases (Pmt proteins) initiate O-mannosylation of secretory proteins. The PMT gene family of the human fungal pathogen Candida albicans consists of PMT1 and PMT6 , as well as three additional PMT genes encoding Pmt2, Pmt4 and Pmt5 isoforms described here. Both PMT2 alleles could not be deleted and growth of conditional strains, containing PMT2 controlled by the MET3-or tetOScHOP1-promoters, was blocked in non-permissive conditions, indicating that PMT2 is essential for growth. A homozygous pmt4 mutant was viable, but synthetic lethality of pmt4 was observed in combination with pmt1 mutations. Hyphal morphogenesis of a pmt4 mutant was defective under aerobic induction conditions, yet increased in embedded or hypoxic conditions, suggesting a role of Pmt4p-mediated O-glycosylation for environment-specific morphogenetic signalling. Although a PMT5 transcript was detected, a homozygous pmt5 mutant was phenotypically silent. All other pmt mutants showed variable degrees of supersensitivity to antifungals and to cell walldestabilizing agents. Cell wall composition was markedly affected in pmt1 and pmt4 mutants, showing a significant decrease in wall mannoproteins. In a mouse model of haematogenously disseminated infection, PMT4 was required for full virulence of C. albicans . Functional analysis of the first complete PMT gene family in a fungal pathogen indicates that Pmt isoforms have variable and specific roles for in vitro and in vivo growth, morphogenesis and antifungal resistance .
External signals induce the switch from a yeast to a hyphal growth form in the fungal pathogen Candida albicans. We demonstrate here that the catalytic subunit of a protein kinase A (PKA) isoform encoded by TPK2 is required for internal signalling leading to hyphal differentiation. TPK2 complements the growth defect of a Saccharomyces cerevisiae tpk1‐3 mutant and Tpk2p is able to phosphorylate an established PKA‐acceptor peptide (kemptide). Deletion of TPK2 blocks morphogenesis and partially reduces virulence, whereas TPK2 overexpression induces hyphal formation and stimulates agar invasion. The defective tpk2 phenotype is suppressed by overproduction of known signalling components, including Efg1p and Cek1p, whereas TPK2 overexpression reconstitutes the cek1 but not the efg1 phenotype. The results indicate that PKA activity of Tpk2p is an important contributing factor in regulating dimorphism of C. albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.