We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.Comment: 41 pages, latex, 2 ps figures generated at runtime by the texdraw package (does not compile with pdflatex). v2: removed assumptions on sums, added short discussion of generalisation, and more details on tensorial strength
This is the first in a series of papers devoted to the theory of decomposition spaces, a general framework for incidence algebras and Möbius inversion, where algebraic identities are realised by taking homotopy cardinality of equivalences of ∞-groupoids. A decomposition space is a simplicial ∞-groupoid satisfying an exactness condition, weaker than the Segal condition, expressed in terms of active and inert maps in ∆. Just as the Segal condition expresses composition, the new exactness condition expresses decomposition, and there is an abundance of examples in combinatorics.After establishing some basic properties of decomposition spaces, the main result of this first paper shows that to any decomposition space there is an associated incidence coalgebra, spanned by the space of 1-simplices, and with coefficients in ∞-groupoids. We take a functorial viewpoint throughout, emphasising conservative ULF functors; these induce coalgebra homomorphisms. Reduction procedures in the classical theory of incidence coalgebras are examples of this notion, and many are examples of decalage of decomposition spaces. An interesting class of examples of decomposition spaces beyond Segal spaces is provided by Hall algebras: the Waldhausen S • -construction of an abelian (or stable infinity) category is shown to be a decomposition space.In the second paper in this series we impose further conditions on decomposition spaces, to obtain a general Möbius inversion principle, and to ensure that the various constructions and results admit a homotopy cardinality. In the third paper we show that the Lawvere-Menni Hopf algebra of Möbius intervals is the homotopy cardinality of a certain universal decomposition space. Two further sequel papers deal with numerous examples from combinatorics.Note: The notion of decomposition space was arrived at independently by Dyckerhoff and Kapranov [17] who call them unital 2-Segal spaces. Our theory is quite orthogonal to theirs: the definitions are different in spirit and appearance, and the theories differ in terms of motivation, examples, and directions.
We explore the relationship between polynomial functors and (rooted) trees. In the first part we use polynomial functors to derive a new convenient formalism for trees, and obtain a natural and conceptual construction of the category Ω of Moerdijk and Weiss; its main properties are described in terms of some factorisation systems. Although the constructions are motivated and explained in terms of polynomial functors, they all amount to elementary manipulations with finite sets. In the second part we describe polynomial endofunctors and monads as structures built from trees, characterising the images of several nerve functors from polynomial endofunctors and monads into presheaves on categories of trees. Polynomial endofunctors and monads over a base are characterised by a sheaf condition on categories of decorated trees. In the absolute case, one further condition is needed, a certain projectivity condition, which serves also to characterise polynomial endofunctors and monads among (coloured) collections and operads.
This is the second in a trilogy of papers introducing and studying the notion of decomposition space as a general framework for incidence algebras and Möbius inversion, with coefficients in ∞-groupoids. A decomposition space is a simplicial ∞-groupoid satisfying an exactness condition weaker than the Segal condition. Just as the Segal condition expresses composition, the new condition expresses decomposition.In this paper, we introduce various technical conditions on decomposition spaces. The first is a completeness condition (weaker than Rezk completeness), needed to control simplicial nondegeneracy. For complete decomposition spaces we establish a general Möbius inversion principle, expressed as an explicit equivalence of ∞-groupoids. Next we analyse two finiteness conditions on decomposition spaces. The first, that of locally finite length, guarantees the existence of the important length filtration for the associated incidence coalgebra. We show that a decomposition space of locally finite length is actually the left Kan extension of a semi-simplicial space. The second finiteness condition, local finiteness, ensures we can take homotopy cardinality to pass from the level of ∞-groupoids to the level of Q-vector spaces.These three conditions -completeness, locally finite length, and local finitenesstogether define our notion of Möbius decomposition space, which extends Leroux's notion of Möbius category (in turn a common generalisation of the locally finite posets of Rota et al. and of the finite decomposition monoids of Cartier-Foata), but which also covers many coalgebra constructions which do not arise from Möbius categories, such as the Faà di Bruno and Connes-Kreimer bialgebras.Note: The notion of decomposition space was arrived at independently by Dyckerhoff and Kapranov (arXiv:1212.3563) who call them unital 2-Segal spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.