Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the key pathway(s) used by IL-5 and IL-13 in the disease process is confounded by the failure of anti–IL-5 or anti–IL-13 treatments to completely inhibit the accumulation of eosinophils in lung tissue. By using mice deficient in both IL-5 and eotaxin (IL-5/eotaxin−/−) we have abolished tissue eosinophilia and the induction of AHR in the allergic lung. Notably, in mice deficient in IL-5/eotaxin the ability of CD4+ T helper cell (Th)2 lymphocytes to produce IL-13, a critical regulator of airways smooth muscle constriction and obstruction, was significantly impaired. Moreover, the transfer of eosinophils to IL-5/eotaxin−/− mice overcame the intrinsic defect in T cell IL-13 production. Thus, factors produced by eosinophils may either directly or indirectly modulate the production of IL-13 during Th2 cell development. Our data show that IL-5 and eotaxin intrinsically modulate IL-13 production from Th2 cells and that these signaling systems are not necessarily independent effector pathways and may also be integrated to regulate aspects of allergic disease.
Interleukin-4 (IL-4) plays a major role in immunoglobulin E (IgE) production. Its signal is conferred to effector cells through binding to the alpha chain of the IL-4 receptor (IL-4Ralpha). We present further evidence for polymorphisms in the IL-4Ralpha gene having an effect on IgE regulation. For two of four common polymorphisms, S503P and Q576R, we found an association with lowered total IgE concentrations (P=0.0008 if occurring together). The polymorphism S503P has not yet been described and is located within the I4R motif of the receptor. In vitro analyses using synthetic peptides of this region showed that the tyrosine kinase Janus kinase 1 (JAK1), as well as IRS-1 and IRS-2 bind to the I4R motif irrespective of the polymorphism or a tyrosine phosphorylation. In vivo immunoassays using T cells of four different groups of individuals (S503/Q576; P503/Q576; S503/R576; P503/R576) revealed that only in case of both polymorphisms the phosphorylation of IRS-1 and IRS-2, but not JAK1 was increased. We found no binding of STAT6 to the I4R synthetic peptides; however, the phosphorylation was reduced in the presence of any of the two polymorphisms, including P503 alone. We discuss possible conformational changes of the receptor leading to the observed effects on the phosphorylation status of IRS-1, IRS-2 and STAT6, in addition to previous findings that Q576R alters STAT6 binding. We conclude that P503 and R576 influence the signal transduction pathways through the IL-4Ralpha, an effect that is magnified by the presence of both polymorphisms. This could explain the observed association effects with lowered total IgE concentrations.
Specific CFTR mutations confer residual CFTR function to rectal epithelia, which is related closely to a mild disease phenotype. Quantification of rectal CFTR-mediated Cl- secretion may be a sensitive test to predict the prognosis of CF disease and identify CF patients who would benefit from therapeutic strategies that would increase residual CFTR activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.