COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723-0.781) increasing to 0.875 (95% CI 0.806-0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients.
Hematology analyzers generate suspect flags in the presence of abnormal cells. False-positive rates for flags are high on all analyzers. Sysmex, Kobe, Japan, has developed new software for its XE-5000 with improved algorithms for flagging blast cells, abnormal lymphocytes or lymphoblasts, and atypical lymphocytes. This study evaluated the efficiency of these flags in 1,002 samples. The XE-5000 was compared with the XE-2100 (Sysmex) and microscopic examination of cell morphologic features. On the XE-2100, the blast flag demonstrated 90 false-positives, 13 true-positives, and 3 false-negatives. The values on the XE-5000 were 27 false-positives, 14 true-positives, and 2 false-negatives. The abnormal lymphocyte/lymphoblast flag was assessed with the atypical lymphocyte flag. The XE-2100 showed 114 false-positives, 23 true-positives, and 20 false-negatives, and on the XE-5000, there were 45 false-positives, 22 true-positives, and 21 false-negatives. This more specific flagging reduces the number of films that require manual review.
COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723-0.781) increasing to 0.875 (95% CI 0.806-0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients.
BACKGROUNDLeukoreduction of blood components was implemented to reduce transfusion‐associated risks. The detection level for residual white blood cells (rWBCs) required to demonstrate leukoreduction was originally considered too low for hematology analyzers. Developments enabling cell counts in body fluids have, however, renewed interest in rWBC counting. An assessment of Sysmex XN hematology analyzers with software offering automated rWBC enumeration intended for use on blood components was performed.STUDY DESIGN AND METHODSPerformance characteristics were determined using platelet, red blood cell (RBC), and plasma samples spiked with WBCs. Subsequently, components (platelets, n = 1367; and plasma, n = 80) were tested and results compared with flow cytometry, to monitor leukoreduction efficiency to a level of less than 1 × 106/unit. Components identified by flow cytometry as having poor leukoreduction, exceeding this limit, were also tested (platelets, n = 3; and RBCs, n = 10).RESULTSLinearity studies up to 32 WBCs/μL showed good correlation between observed and expected results (R2 > 0.9996). Precision analysis gave an average limit of quantitation of 2 WBCs/μL with coefficients of variation less than 20%. Average carryover was 0.1%. Plain sample tubes were a source of aberrant results with routine components. Using ethylenediaminetetraacetic acid tubes the analyzer gave results greater than 1 × 106/unit in 2.7% of cases compared with 1.4% by flow cytometry, but overall results were within specification, with more than 90% of components having rWBC values below the limit. All incidences of poor leukoreduction, with flow cytometry results greater than 13 rWBCs/μL were correctly identified, with an excellent correlation between results (R2 = 0.9818).CONCLUSIONThe analyzer demonstrated acceptable performance characteristics for enumeration of rWBCs; consequently, additional multisite evaluations are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.