Mitochondrial reactive oxygen species (ROS) play a central role in most aging-related diseases. ROS are produced at the respiratory chain that demands NADH for electron transport and are eliminated by enzymes that require NADPH. The nicotinamide nucleotide transhydrogenase (Nnt) is considered a key antioxidative enzyme based on its ability to regenerate NADPH from NADH. Here, we show that pathological metabolic demand reverses the direction of the Nnt, consuming NADPH to support NADH and ATP production, but at the cost of NADPH-linked antioxidative capacity. In heart, reverse-mode Nnt is the dominant source for ROS during pressure overload. Due to a mutation of the Nnt gene, the inbred mouse strain C57BL/6J is protected from oxidative stress, heart failure, and death, making its use in cardiovascular research problematic. Targeting Nnt-mediated ROS with the tetrapeptide SS-31 rescued mortality in pressure overload-induced heart failure and could therefore have therapeutic potential in patients with this syndrome.
It has become common sense that the failing heart is an "engine out of fuel". However, undisputable evidence that, indeed, the failing heart is limited by insufficient ATP supply is currently lacking. Over the last couple of years, an increasingly complex picture of mechanisms evolved that suggests that potentially metabolic intermediates and redox state could play the more dominant roles for signaling that eventually results in left ventricular remodeling and contractile dysfunction. In the pathophysiology of heart failure, mitochondria emerge in the crossfire of defective excitation-contraction coupling and increased energetic demand, which may provoke oxidative stress as an important upstream mediator of cardiac remodeling and cell death. Thus, future therapies may be guided towards restoring defective ion homeostasis and mitochondrial redox shifts rather than aiming solely at improving the generation of ATP.
Mitochondrial production of reactive oxygen species (ROS) contributes to the progression of heart failure, but the mechanisms of ROS generation are incompletely resolved. Superoxide (. O 2 À
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.