Subacute ruminal acidosis (SARA) is likely to arise when an easily palatable, high-energy diet meets a ruminal environment not adapted to this type of substrate. Increase of short-chained fatty acids (SCFA) will occur. Eventually, this may result in a transient nadir of ruminal pH below 5.5. Two situations are likely to represent the risk of SARA. First, fresh lactating cows are confronted with a diet considerably differing from that in the dry-period. A diet change carried out too rapidly or without proper transition management will put the animals at risk. Secondly, further in lactation, inaccurate calculation of dry-matter-intake (DMI) leading to wrong roughage/concentrate ratio, an inadequate content of structure within the diet or mistakes in preparing of total mixed rations may produce SARA. The consequences of SARA are diverse and complex. Laminitis is regularly connected to SARA and the negative impact of organic acids on the ruminal wall may lead to parakeratosis enabling translocation of pathogens into the bloodstream provoking inflammation and abscessation throughout the ruminant body. Moreover, milk-fat depression (MFD) can be related to SARA. In order to achieve a proper diagnosis, SARA has to be understood as a herd-management problem. A screening of the herd for SARA by means of a rumenocentesis, performed on a sample-group, preferably 12 individuals, may reveal the presence of SARA. The herd screening should include the risk group suspected, preferably. The prevention of SARA applies to the principles of ruminant feeding. Careful transition management from the dry to the lactation period and control of fibre-content and ration quality should be more yielding than the use of buffers or antibiotic drugs.U.S.
Due to their high energy requirements, high-yielding dairy cows receive high-grain diets. This commonly jeopardises their gastrointestinal health by causing subacute ruminal acidosis (SARA) and hindgut acidosis. These disorders can disrupt nutrient utilisations, impair the functionalities of gastrointestinal microbiota, and reduce the absorptive and barrier capacities of gastrointestinal epithelia. They can also trigger inflammatory responses. The symptoms of SARA are not only due to a depressed rumen pH. Hence, the diagnosis of this disorder based solely on reticulo-rumen pH values is inaccurate. An accurate diagnosis requires a combination of clinical examinations of cows, including blood, milk, urine and faeces parameters, as well as analyses of herd management and feed quality, including the dietary contents of NDF, starch and physical effective NDF. Grain-induced SARA increases acidity and shifts availabilities of substrates for microorganisms in the reticulo-rumen and hindgut and can result in a dysbiotic microbiota that are characterised by low richness, diversity and functionality. Also, amylolytic microorganisms become more dominant at the expense of proteolytic and fibrolytic ones. Opportunistic microorganisms can take advantage of newly available niches, which, combined with reduced functionalities of epithelia, can contribute to an overall reduction in nutrient utilisation and increasing endotoxins and pathogens in digesta and faeces. The reduced barrier function of epithelia increases translocation of these endotoxins and other immunogenic compounds out of the digestive tract, which may be the cause of inflammations. This needs to be confirmed by determining the toxicity of these compounds. Cows differ in their susceptibility to poor gastrointestinal health, due to variations in genetics, feeding history, diet adaptation, gastrointestinal microbiota, metabolic adaptation, stress and infections. These differences may also offer opportunities for the management of gastrointestinal health. Strategies to prevent SARA include balancing the diet for physical effective fibre, non-fibre carbohydrates and starch, managing the different fractions of non-fibre carbohydrates, and consideration of the type and processing of grain and forage digestibility. Gastrointestinal health disorders due to high grain feeding may be attenuated by a variety of feed supplements and additives, including buffers, antibiotics, probiotics/direct fed microbials and yeast products. However, the efficacy of strategies to prevent these disorders must be improved. This requires a better understanding of the mechanisms through which these strategies affect the functionality of gastrointestinal microbiota and epithelia, and the immunity, inflammation and 'gastrointestinal-health robustness' of cows. More representative models to induce SARA are also needed.
The prevalence of subacute ruminal acidosis (SARA) was determined in 197 dairy cows in 18 herds in the Dutch province of Friesland. Samples of rumen fluid were taken by rumenocentesis from between five and 19 animals on each farm and the pH of each sample was determined. The body condition of 139 of the cows was scored approximately three weeks before they calved and three weeks after they calved. The overall prevalence of SARA was 13.8 per cent, and the prevalence on individual farms ranged between 0 per cent (on seven of the farms) and 38 per cent (on one farm). The stage of lactation did not influence the prevalence of SARA but the cows with the condition lost more body condition over the calving period.
BackgroundThe prevalence and the clinical consequences of subacute ruminal acidosis (SARA) in dairy cows are still poorly understood. In order to evaluate the prevalence of SARA, 26 German dairy farms were included in a field study. In each herd, between 11 and 14 lactating dairy cows were examined for their ruminal pH using rumenocentesis. Milk production data and farm management characteristics were recorded. Each farm was scored for lameness prevalence among lactating animals, and body condition score was recorded three times four to five weeks apart in all animals examined. Farms were grouped on basis of ruminal pH and compared for lameness, body condition, milk production parameters and style of management. Animals were grouped on basis of their measured ruminal pH and compared accordingly for milk production parameters and body condition score.ResultsOf 315 cows examined, 63 individuals (20%) exhibited a ruminal pH of ≤ 5.5 at time of rumenocentesis. Of 26 farms examined, eleven farms had three or more of their cows experiencing a ruminal pH of ≤ 5.5 and were classified as likely experiencing subacute ruminal acidosis. These farms tended to be bigger than the others and offered less lying space to the lactating cows. There was no clear tendency regarding lameness. Among individual cows, animals with a low ruminal pH of ≤ 5.5 were found to be in significantly poorer body condition than animals with higher pH values (p < 0,05).ConclusionsThe study shows 11 out of 26 of herds likely experiencing SARA. Bigger herds tend to be at a higher risk for SARA, while individuals with low ruminal pH tend to be lower in body condition. The study points to the importance of management in preventing SARA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.