By analysis of a temperature-sensitive yeast mutant, a heat-shock protein in the matrix of mitochondria, mitochondrial hsp70 (Ssclp), is found to be involved both in translocation of nuclear-encoded precursor proteins across the mitochondrial membranes and in (re)folding of imported proteins in the matrix.
Upon addition of GTPγS to in vitro budding reactions, COP I vesicles form but retain their coat, making them easy to isolate and analyze. We have developed an in vitro budding assay that reconstitutes the formation of COP I-derived vesicles under conditions where GTP hydrolysis can occur. Once formed, vesicles are uncoated and appear functional as they fuse readily with acceptor membranes. Electron microscopy shows a homogeneous population of uncoated vesicles that contain the medial/trans Golgi enzyme α1,2-mannosidase II. Biochemical quantitation of vesicles reveals that resident Golgi enzymes are up to 10-fold more concentrated than in donor membranes, but vesicles formed in the presence of GTPγS show an average density of resident Golgi enzymes similar to that seen in donor membranes. We show that the sorting process is mediated by the small GTPase arf-1 as addition of a dominant, hydrolysis-deficient arf-1 Q 71 L mutant produced results similar to that of GTPγS. Strikingly, the average density of the anterograde cargo protein, polymeric IgA receptor, in COP I-derived vesicles was similar to that found in starting membranes and was independent of GTP hydrolysis. We conclude that hydrolysis of GTP bound to arf-1 promotes selective segregation and concentration of Golgi resident enzymes into COP I vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.