Progress in understanding signal transduction and metabolic pathways is hampered by a shortage of suitable sensors for tracking metabolites, second messengers, and neurotransmitters in living cells. Here we introduce a class of rationally designed semisynthetic fluorescent sensor proteins, called Snifits, for measuring metabolite concentrations on the cell surface of mammalian cells. Functional Snifits are assembled on living cells through two selective chemical labeling reactions of a genetically encoded protein scaffold. Our best Snifit displayed fluorescence intensity ratio changes on living cells significantly higher than any previously reported cell-surface-targeted fluorescent sensor protein. This work establishes a generally applicable and rational strategy for the generation of cell-surface-targeted fluorescent sensor proteins for metabolites of interest.
Background:The mobility of G protein-coupled receptors in the plasma membrane is of central importance to regulate transmembrane signaling. Results: In live cells, individual receptors show a broad mobility distribution with typical patterns for different phases of cellular signaling. Conclusion: Heterogeneity of receptor mobility is critical in regulation of receptor activity. Significance: These findings add further insights to the plasticity of receptor signaling.
Cellular signaling is classically investigated by measuring optical or electrical properties of single or populations of living cells. Here we show that ligand binding to cell surface receptors and subsequent activation of signaling cascades can be monitored in single, (sub-)micrometer sized native vesicles with single-molecule sensitivity. The vesicles are derived from live mammalian cells using chemicals or optical tweezers. They comprise parts of a cell’s plasma membrane and cytosol and represent the smallest autonomous containers performing cellular signaling reactions thus functioning like minimized cells. Using fluorescence microscopies, we measured in individual vesicles the different steps of G-protein-coupled receptor mediated signaling like ligand binding to receptors, subsequent G-protein activation and finally arrestin translocation indicating receptor deactivation. Observing cellular signaling reactions in individual vesicles opens the door for downscaling bioanalysis of cellular functions to the attoliter range, multiplexing single cell analysis, and investigating receptor mediated signaling in multiarray format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.