It is increasingly important to provide post-stroke patients with rapid access to patient-tailored assistive technologies to increase independence, mobility, and participation. Automating the selection of assistive devices based on artificial intelligence could speed up the process and improve accuracy. It would also relieve the burden on diagnosticians and therapists and speed up the introduction of new ranges by automating databases. This article compares selected machine learning classification methods in the area of post-stroke rehabilitation device selection. The article covers the specifics of the selection, the choice of classification methods, and the identification of the best one, as well as the experimental part, the description of the results, the comparison process, and directions for further research. The novelty lies both in the topic, as the choice of classification method has an impact on the accuracy of classification in the selection of medical materials, and in the manner of the comprehensive approach. The possible contribution is of great scientific and clinical relevance, but above all, it has economic and social importance, enabling post-stroke individuals to return more quickly to the community, learning, and work, and relieving the burden on the health care system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.