This article deals with the decoding of short block length Low Density Parity Check (LDPC) codes. It has already been demonstrated that Belief Propagation (BP) can be adjusted to the short coding length, thanks to its modeling by a Recurrent Neural Network (BP-RNN). To strengthen this adaptation, we introduce a new training method for the BP-RNN. Its aim is to specialize the BP-RNN on error events sharing the same structural properties. This approach is then associated with a new decoder composed of several parallel specialized BP-RNN decoders, each trained on correcting a different type of error events. Our results show that the proposed specialized BP-RNNs working in parallel effectively enhance the decoding capacity for short block length LDPC codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.