In the field of hot plate welding, experimental investigations show that the stress cracks are caused by inherent stresses in the component, which are induced in the part while it is being heated on the tool. For the better understanding of the process parameters and their effects on the phenomenon of stress cracking, a simple theoretical model for the calculation of the temperature and the stress field is to be developed. The application of the presented method shows the effects of the process parameters on the phenomenon of stress cracking and correlates with the experimental results of further investigations.
Theoretical stress distribution.magnified imageTheoretical stress distribution.
Heating experiments were carried out in order to investigate the significance of the different process parameters on susceptibility to stress cracking. With the help of wetting tests, different crack lengths were generated in the heated sheet and subsequently compared with the various process parameters by means of multiple regression analysis. Another focal point is the estimation of the normal stress difference (|σ x-σ y|)at each point of the specimen by means of 2D photoelastic stress analysis. In both cases the marked correlations between the process parameters and the phenomenon of stress cracking are recognisable, and the results can be used to minimise stress cracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.