Structural and functional characterization of 2-PS together with generation of a CHS mutant with an initiation/elongation cavity analogous to 2-PS demonstrates that cavity volume influences the choice of starter molecule and controls the final length of the polyketide. These results provide a structural basis for control of polyketide length in other PKSs, and suggest strategies for further increasing the scope of polyketide biosynthetic diversity.
Stilbene synthase (STS) and chalcone synthase (CHS) each catalyze the formation of a tetraketide intermediate from a CoA-tethered phenylpropanoid starter and three molecules of malonyl-CoA, but use different cyclization mechanisms to produce distinct chemical scaffolds for a variety of plant natural products. Here we present the first STS crystal structure and identify, by mutagenic conversion of alfalfa CHS into a functional stilbene synthase, the structural basis for the evolution of STS cyclization specificity in type III polyketide synthase (PKS) enzymes. Additional mutagenesis and enzymatic characterization confirms that electronic effects rather than steric factors balance competing cyclization specificities in CHS and STS. Finally, we discuss the problematic in vitro reconstitution of plant stilbenecarboxylate pathways, using insights from existing biomimetic polyketide cyclization studies to generate a novel mechanistic hypothesis to explain stilbenecarboxylate biosynthesis.
The repertoire of secondary metabolism (involving the production of compounds not essential for growth) in the plant kingdom is enormous, but the genetic and functional basis for this diversity is hard to analyse as many of the biosynthetic enzymes are unknown. We have now identified a key enzyme in the ornamental plant Gerbera hybrida (Asteraceae) that participates in the biosynthesis of compounds that contribute to insect and pathogen resistance. Plants transformed with an antisense construct of gchs2, a complementary DNA encoding a previously unknown function, completely lack the pyrone derivatives gerberin and parasorboside. The recombinant plant protein catalyses the principal reaction in the biosynthesis of these derivatives GCHS2 is a polyketide synthase that uses acetyl-CoA and two condensation reactions with malonyl-CoA to form the pyrone backbone of the natural products. The enzyme also accepts benzoly-CoA to synthesize the backbone of substances that have become of interest as inhibitors of the HIV-1 protease. GCHS2 is related to chalcone synthase (CHS) and its properties define a new class of function in the protein superfamily. It appears that CHS-related enzymes are involved in the biosynthesis of a much larger range of plant products than was previously realized
Chalcone (CHS) and stilbene (STS) synthases are related plant-specific polyketide synthases that are key enzymes in the biosynthesis of flavonoids and of stilbene phytoalexins, respectively. A phylogenetic tree constructed from 34 CHS and four STS sequences revealed that the STS formed no separate cluster but grouped with CHS from the same or related plants. This suggested that STS evolved from CHS several times independently. We attempted to stimulate this by site-directed mutagenesis of an interfamily CHS/STS hybrid, which contained 107 amino acids of a CHS from Sinapis alba (N-terminal) and 287 amino acids of a STS from Arachis hypogaea. The hybrid had no enzyme activity. Three amino acid exchanges in the CHS part (Gln-100 to Glu, Val-103 to Met, Val-105 to Arg) were sufficient to obtain low STS activity, and one additional exchange (Gly-23 to Thr) resulted in 20-25% of the parent STS activity. A kinetic analysis indicated (1) that the hybrids had the same Km for the substrate 4-coumaroyl-CoA but a lower Vmax than the parent STS, and (2) that they had a different substrate preference than the parent STS and CHS. Most of the other mutations and their combinations led to enzymatically inactive protein aggregates, suggesting that the subunit folding and/or the dimerization was disturbed. We propose that STS evolved from CHS by a limited number of amino acid exchanges, and that the advantage gained by this enzyme function favored the selection of plants with improved STS activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.