Crude aqueous extracts from Arabidopsis leaves were subjected to chromatographic separations, after which the different fractions were monitored for antimicrobial activity using the fungus Neurospora crassa as a test organism. Two major fractions were obtained that appeared to have the same abundance in leaves from untreated plants versus leaves from plants challenge inoculated with the fungus Alternaria brassicicola. One of both major antimicrobial fractions was purified to homogeneity and identified by 1 H nuclear magnetic resonance, gas chromatography/electron impact mass spectrometry, and gas chromatography/chemical ionization mass spectrometry as 4-methylsulphinylbutyl isothiocyanate (ITC). This compound has previously been described as a product of myrosinase-mediated breakdown of glucoraphanin, the predominant glucosinolate in Arabidopsis leaves. 4-Methylsulphinylbutyl ITC was found to be inhibitory to a wide range of fungi and bacteria, producing 50% growth inhibition in vitro at concentrations of 28 m for the most sensitive organism tested (Pseudomonas syringae). A previously identified glucosinolate biosynthesis mutant, gsm1-1, was found to be largely deficient in either of the two major antimicrobial compounds, including 4-methylsulphinylbutyl ITC. The resistance of gsm1-1 was compared with that of wild-type plants after challenge with the fungi A. brassicicola, Plectosphaerella cucumerina, Botrytis cinerea, Fusarium oxysporum, or Peronospora parasitica, or the bacteria Erwinia carotovora or P. syringae. Of the tested pathogens, only F. oxysporum was found to be significantly more aggressive on gsm1-1 than on wild-type plants. Taken together, our data suggest that glucosinolate-derived antimicrobial ITCs can play a role in the protection of Arabidopsis against particular pathogens.
The repertoire of secondary metabolism (involving the production of compounds not essential for growth) in the plant kingdom is enormous, but the genetic and functional basis for this diversity is hard to analyse as many of the biosynthetic enzymes are unknown. We have now identified a key enzyme in the ornamental plant Gerbera hybrida (Asteraceae) that participates in the biosynthesis of compounds that contribute to insect and pathogen resistance. Plants transformed with an antisense construct of gchs2, a complementary DNA encoding a previously unknown function, completely lack the pyrone derivatives gerberin and parasorboside. The recombinant plant protein catalyses the principal reaction in the biosynthesis of these derivatives GCHS2 is a polyketide synthase that uses acetyl-CoA and two condensation reactions with malonyl-CoA to form the pyrone backbone of the natural products. The enzyme also accepts benzoly-CoA to synthesize the backbone of substances that have become of interest as inhibitors of the HIV-1 protease. GCHS2 is related to chalcone synthase (CHS) and its properties define a new class of function in the protein superfamily. It appears that CHS-related enzymes are involved in the biosynthesis of a much larger range of plant products than was previously realized
A novel method for extracting butyrylcholinesterase (BuChE) from serum as a means of identifying and measuring nerve agent adducts to human BuChE is presented here. Antibutyrylcholinesterase monoclonal antibodies were conjugated to protein-G ferromagnetic particles and mixed with 500 microL serum samples. The particle-antibody-BuChE product was rinsed and directly digested with pepsin. Native and isotopically enriched nonapeptides corresponding to the pepsin digest products for uninhibited BuChE, and sarin, cyclohexylsarin, VX, and Russian VX nerve agent-inhibited BuChE were synthesized for use as calibrators and internal standards, respectively. Internal standards were added to the filtered digest sample, and the samples were quantified via high performance liquid chromatography-isotope dilution-tandem mass spectrometry. The ratio of adducted to total BuChE nonapeptides was calculated for each nerve agent-exposed serum sample using data collected in a single chromatogram. Nerve agent-inhibited quality control serum pools were characterized as part of method validation; the method was observed to have extremely low background noise. The measurement of both uninhibited and inhibited BuChE peptides compensated for any variations in the pepsin digestion before the internal standard peptide was added to the sample and may prove useful in individualizing patient results following a nerve agent exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.