The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogeninducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2,6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247-1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.
Kingdom: Fungi, phylum: Ascomycota, subphylum, Pezizomycotina, class: Sordariomycetes, order: Phyllachorales, genus: Verticillium. Host range and disease symptoms: Over 200 mainly dicotyledonous species including herbaceous annuals, perennials and woody species are host to Verticillium diseases. As Verticillium symptoms can vary between hosts, there are no unique symptoms that belong to all plants infected by this fungus. Disease symptoms may comprise wilting, chlorosis, stunting, necrosis and vein clearing. Brown vascular discoloration may be observed in stem tissue cross-sections. Pathogenicity: Verticillium spp. have been reported to produce cell-wall-degrading enzymes and phytotoxins that all have been implicated in symptom development. Nevertheless, evidence for a crucial role of toxins in pathogenicity is inconsistent and therefore not generally accepted. Microsclerotia and melanized mycelium play an important role in the disease cycle as they are a major inoculum source and are the primary long-term survival structures. Resistance: Different defence responses in the prevascular and the vascular stage of Verticillium wilt diseases determine resistance. Although resistance physiology is well established, the molecular processes underlying this physiology remain largely unknown. Resistance against Verticillium largely depends on the isolation of the fungus in contained parts of the xylem tissues followed by subsequent elimination of the fungus. Although genetic resistance has been described in several plant species, only one resistance locus against Verticillium has been cloned to date. Useful website: http://cbr-rbc.nrc-cnrc.gc.ca/services/cogeme/
A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties i n vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase i n the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (nprl and c p r l ) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants ein2 and Coil that are blocked in their response to ethylene and methyl jasmonate, respectively.Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.