Kingdom: Fungi, phylum: Ascomycota, subphylum, Pezizomycotina, class: Sordariomycetes, order: Phyllachorales, genus: Verticillium. Host range and disease symptoms: Over 200 mainly dicotyledonous species including herbaceous annuals, perennials and woody species are host to Verticillium diseases. As Verticillium symptoms can vary between hosts, there are no unique symptoms that belong to all plants infected by this fungus. Disease symptoms may comprise wilting, chlorosis, stunting, necrosis and vein clearing. Brown vascular discoloration may be observed in stem tissue cross-sections. Pathogenicity: Verticillium spp. have been reported to produce cell-wall-degrading enzymes and phytotoxins that all have been implicated in symptom development. Nevertheless, evidence for a crucial role of toxins in pathogenicity is inconsistent and therefore not generally accepted. Microsclerotia and melanized mycelium play an important role in the disease cycle as they are a major inoculum source and are the primary long-term survival structures. Resistance: Different defence responses in the prevascular and the vascular stage of Verticillium wilt diseases determine resistance. Although resistance physiology is well established, the molecular processes underlying this physiology remain largely unknown. Resistance against Verticillium largely depends on the isolation of the fungus in contained parts of the xylem tissues followed by subsequent elimination of the fungus. Although genetic resistance has been described in several plant species, only one resistance locus against Verticillium has been cloned to date. Useful website: http://cbr-rbc.nrc-cnrc.gc.ca/services/cogeme/
Vascular wilt diseases caused by soil-borne pathogens are among the most devastating plant diseases worldwide. The Verticillium genus includes vascular wilt pathogens with a wide host range. Although V. longisporum infects various hosts belonging to the Cruciferaceae, V. dahliae and V. albo-atrum cause vascular wilt diseases in over 200 dicotyledonous species, including economically important crops. A locus responsible for resistance against race 1 strains of V. dahliae and V. albo-atrum has been cloned from tomato (Solanum lycopersicum) only. This locus, known as Ve, comprises two closely linked inversely oriented genes, Ve1 and Ve2, that encode cell surface receptor proteins of the extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. Here, we show that Ve1, but not Ve2, provides resistance in tomato against race 1 strains of V. dahliae and V. albo-atrum and not against race 2 strains. Using virus-induced gene silencing in tomato, the signaling cascade downstream of Ve1 is shown to require both EDS1 and NDR1. In addition, NRC1, ACIF, MEK2, and SERK3/ BAK1 also act as positive regulators of Ve1 in tomato. In conclusion, Ve1-mediated resistance signaling only partially overlaps with signaling mediated by Cf proteins, type members of the receptor-like protein class of resistance proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.