Carbon fibres (CFs), originally made for use in structural composites, have also been demonstrated as high capacity Li-ion battery negative electrodes. Consequently, CFs can be used as structural electrodes; simultaneously carrying mechanical load and storing electrical energy in multifunctional structural batteries. To date, all CF microstructural designs have been generated to realise a targeted mechanical property, e.g. high strength or stiffness, based on a profound understanding of the relationship between the graphitic microstructure and the mechanical performance. Here we further advance this understanding by linking CF microstructure to the lithium insertion mechanism and the resulting electrochemical capacity. Different PAN-based CFs ranging from intermediate-to high-modulus types with distinct differences in microstructure are characterised in detail by SEM and HR-TEM and electrochemical methods. Furthermore, the mechanism of Li-ion intercalation during charge/discharge is studied by in situ confocal Raman spectroscopy on individual CFs. RamanG band analysis reveals a Li-ion intercalation mechanism in the high-modulus fibre reminiscent of that in crystalline graphite. Also, the combination of a relatively low capacity of the highmodulus CFs (ca. 150 mAh/g) is shown to be due to that the formation of a staged structure is frustrated by an obstructive turbostratic disorder. In contrast, intermediate-modulus CFs, which have significantly higher capacities (ca. 300 mAh/g), have Raman spectra indicating a Li-ion insertion mechanism closer to that of partly disordered carbons. Based on these findings, CFs with improved multifunctional performance can be realized by tailoring the graphitic order and crystallite sizes.
Highly concentrated electrolytes (HCEs) based on LiPF6 in propylene carbonate (PC) have been examined as lithium-ion battery electrolytes. These HCEs have lower ionic conductivities and higher viscosities than ethylene carbonate (EC) electrolytes with 1.2 M LiPF6, but they have higher Li+ ion transference numbers. Electrochemical cycling behaviour of LiNi0.8Co0.015Al0.05O2//graphite cells with 3.2 M LiPF6 in PC resembles that of cells with EC-based electrolytes; the HCE cells have higher impedance, which can be lowered by increasing test temperature. By employing Raman and infrared spectroscopy, combined with density functional theory and ab initio molecular dynamics simulations, we reveal that the Li+ solvation structure and speciation are key factors that determine cell performance. Two distinct regimes are observed as a function of salt concentration—in the conventional regime, the solvation number (SN) is mostly constant, while in the HCE regime it decreases linearly. Graphite exfoliation is suppressed only at very high salt concentrations (>2.4 M), where [PC] free /[Li+] < 1 and P F 6 − f r e e > P C f r e e . Results from the Advanced Electrolyte Model indicate that Li+ desolvation improves at higher LiPF6 concentrations, thereby mitigating PC co-intercalation into the graphite. However, Li+ ion transport is hindered in the HCEs, which increases impedance at both the oxide-positive and graphite-negative electrodes.
A series of homoleptic Ru(II) complexes including the tris-bidentate complexes of a new bidentate ligand 8-(1-pyrazol)-quinoline (Q1Pz) and bidentate 8-(3-pyrazol)-quinoline (Q3PzH), as well as the bis-tridentate complex of bis(quinolinyl)-1,3-pyrazole (DQPz) was studied. Together these complexes explore the orientation of the pyrazole relative to the quinoline. By examining the complexes structurally, photophysically, photochemically, electrochemically, and computationally by DFT and TD-DFT, it is shown that the pyrazole orientation has a significant influence on key properties. In particular, its orientation has noticeable effects on oxidation and reduction potentials, photostability and proton sensitivity, indicating that [Ru(Q3PzH)3](2+) is a particularly good local environment acidity-probe candidate.
The unsymmetrical nature of a new tridentate ligand bis(quinolinyl)-1,3-pyrazole (DQPz) is exploited in a bistridentate Ru(II) complex [Ru(DQPz)2](2+) to elucidate an unexpected dynamic diastereomerism. Structural characterization based on a combination of nuclear magnetic resonance spectroscopy and density functional theory calculations reveals the first quantifiable diastereomerization dynamics for Ru complexes with fully conjugated tridentate heteroaromatic ligands. A mechanism that involves a large-scale twisting motion of the ligands is proposed to explain the dynamic interconversion between the observed diastereomers, and the analysis of both experiments and calculations reveals a potential energy landscape with a transition barrier for the diastereomerization of ∼70 kJ mol(-1). The structural flexibility demonstrated around the central transition metal ion has implications for integration of complexes into catalytic and photochemical applications.
Self-standing carbon nanofibers (CNF) were electrospun and tested in K-ion batteries (KIB). The comparison of the electrochemical performance of KIB using potassium bis(fluorosulfonyl)imide (KFSI) and potassium hexafluorophosphate (KPF 6) carbonate-based electrolytes revealed that, despite the coulombic efficiency is more readily stabilized with KFSI than with KPF 6 , the long-term cycling is quite the same, with a specific capacity of 200 mAh.g-1 for the CNF electrode. Post-mortem X-ray photoelectron spectroscopy analysis shows a more stable solid electrolyte interphase (SEI) for KIB employing KFSI. Finally, the K + ion storage mechanism was investigated by combining cyclic voltammetry and operando Raman spectroscopy, highlighting a combination of adsorption and intercalation processes. However the rate capability is better with the KPF 6 salt due to SEI layers formed at both CNF and K metal electrode, highlighting that full cell may lead to even superior results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.