In northern countries, the climate, and consequently the use of studded tyres and winter traction sanding, causes accumulation of road dust over winter and spring, resulting in high PM 10 concentrations during springtime dusting events. To quantify the dust at the road surface, a method-the wet dust sampler (WDS)was developed allowing repeatable sampling also under wet and snowy conditions. The principle of operation is flushing high-pressurised water over a defined surface area and transferring the dust laden water into a container for further analyses. The WDS has been used for some time and is presented in detail to the international scientific community as reported by Jonsson et al. (2008) and Gustafsson et al. (2019), and in this paper, the latest version is presented together with an evaluation of its performance. To evaluate the WDS, the ejected water amount was measured, as well as water losses in different parts of the sampling system, together with indicative dust measurement using turbidity as a proxy for dust concentration. The results show that the WDS, when accounting for all losses, have a predictable and repeatable water performance, with no impact on performance based on the variety of asphalt surface types included in this study, given undamaged surfaces. The largest loss was found to be water retained on the surface, and the dust measurements imply that this might not have as large impact on the sampled dust as could be expected. A theoretical particle mass balance shows small particle losses, while field measurements show higher losses. Several tests are suggested to validate and improve on the mass balances. Finally, the WDS is found to perform well and is able to contribute to further knowledge regarding road dust implications for air pollution.
An experimentally based prediction model of road abrasion wear due to studded tyres is available in Sweden and has been found to work well. However, it has not been validated since 2007, and since then road surfaces and tyre design have developed, and the question has arisen regarding the model's current validity. The abrasion wear model is used in the NORTRIP emission model (NOn-exhaust Road Traffic Induced Particle emission modelling), and the effect of a recalibrated abrasion wear model on the emission model is shown. In this paper, the abrasion wear model is compared to full-scale field measurements at several recently constructed roads in Sweden to investigate its validity, while also proposing changes to allow for continued use. It is concluded that the model overestimates the wear and an update is suggested. In addition, the impact on NORTRIP emission predictions is briefly investigated. There were also indications that NORTRIP is affected by the abrasion model overestimating the contribution of pavement wear to the particle emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.