The world's energy demand is continuously increasing, and natural gas will play a vital role in covering the future need for energy as part of a shift toward a cleaner carbon fuel mix. Offshore reserves constitute a considerable part of the world's recoverable gas. Accordingly, viable development of these reserves is instrumental for future socially responsible energy production and meeting the commitments of the Paris agreement. The competitive marketplace for natural gas is challenging the subsea project economics now more than ever. This is driving the innovation for field enabling subsea technology solutions, targeting reduced capital and operational costs while increasing recovery of reserves compared with conventional offshore extraction. In 2015, the world's first subsea multiphase gas compression system was installed offshore Norway. The system comprises two-off 5-MW machines configurable for serial or parallel compression. This system has now gained considerable and valuable operational experience. One of the most noticeable learnings from the field operation is the way the multiphase compressor has been utilized to unlock abandoned liquid reserves. In addition to the gas produced, a cyclic production of more than 5,000 bbl/d has been documented. Operation of the system has also shown how the subsea compressors regulates the wells’ backpressure and thus constitutes an effective pressure filter toward topside. This allows the operators to be more flexible with well operation without disturbing topside pressures. To effectively produce and improve ultimate recovery in large offshore gas fields, the next-step requirements for volumetric flow capacity and drawdown pressure become substantial for multiphase compressors. Accordingly, this also applies to the required shaft power. State-of-the-art computer modeling and aerodynamic testing has been applied to improve the compressor design and throughput capacity. The differential pressure capability of the multiphase compressor has, up until now, been limited by the ultimate load capability of the axial thrust bearing. A thrust-balancing solution is now being included, and detailed design work is ongoing as part of a larger technology collaboration with major operators. Enhancements of the motor technology to larger outputs is part of this program as well. Combined, these improvements are fundamental for the ongoing qualification of the 8 MW and later 12 MW multiphase compressors while adding flexibility to the associated system design. Shifting focus from compressor to system is a key factor to ensure the life-of-field return on investment. As tieback and power rating increases, minimizing the power system cost and complexity can entail rethinking of the compressor topology. This further justifies this focus shift in terms of field development planning. Ensuring an effective fit and compatibility with the subsea power system key units currently in qualification with world-leading powerhouses is a competitive advantage. The multiphase compressor, with its two-motor contrarotating design, ensures not only efficient power system compatibility but can contribute to game changing step-out topologies due to the low transmission frequency required for the power supply. Minimizing the complexity of both process and power architecture is crucial in terms of cost, robustness, and system reliability.
Subsea boosting has been building a track record at increasing depths and higher pressures. This has introduced certain new challenges. Continuous development of the technology has been required to maintain the historical high reliability and operability. This paper identifies operational challenges associated with a specific deepwater field and how they were resolved. The close collaboration between the operator's and the pump supplier's teams is emphasized as a success-factor. Insight is given into the development team's problem-solving strategy, as well as the applied technology itself. Extensive use of digital tools such as advanced dynamic modelling and virtual prototyping has been applied to debug concepts ahead of physical prototyping. This resulted in a fast track project with only very few time-consuming and expensive re-iterations. In 2014 the world's deepest seabed boosting pump system was successfully installed and commissioned. The permanent real-time condition monitoring system allowed the pump manufacturer to remotely monitor the pump performance. During the first few months of operation, it was determined that the shut-in pressure gradient was significantly steeper than specified. The production pressure build-up following a pump stop was more abrupt than the pump's barrier fluid pressure control system was designed to deal with. Because the gradient of the pressure increase couldn't be altered, a limitation on the pump's maximum pressure drawdown was immediately put in place. This was done to minimize the amplitude of the pressure increase on shut-in, and to prevent the production pressure from exceeding the pump's barrier fluid pressure. Without such a limitation, this condition could result in a pump breakdown. Continuous operation with this constraint in place would lead to significant curtailment once additional pressure drawdown was required to maintain the nameplate production. Seabed pumps are equipped with a barrier fluid system, which is regarded among the main success factors leading to the high meantime to failure. The barrier fluid system provides the pump with clean fluid at a correct pressure. The barrier fluid is used for lubrication of bearings and seals, heat transfer, and electric insulation. It also constitutes a barrier, hence its name, for any production fluid ingress into the electric motor through pressure control. The pressure is being closed-loop regulated to stay within a certain band above the production pressure. Barrier fluid is conveyed between host facility and the subsea pump through small-bore tubing in the umbilical. Thus, quick volume exchanges between topside and subsea is limited. As the umbilical length increase, the response time, as given by speed of sound, also becomes a limiting factor. A subsea pressure control system is the most common solution in the industry for larger depths and long tie-backs. As the well pressures were depleting for the described deepwater field, the drawdown limit posed a risk for curtailed production. To avoid falling below the nameplate production of 170 kbbls/day, the full differential pressure capability of the pumps was soon required. The novel pressure control technology was developed, qualified and successfully implemented on the pumps. It allows for safe operation through ultra-quick production pressure changes without the need for upgrades to the umbilical. In fact, the technology allows for longer step-out and further cost savings on future umbilical and seabed boosting deployments as even smaller-sized umbilical tubing can be utilized. The successful development of the novel pressure control system prevented production curtailment altogether. The system is now successfully operating subsea, and the pumps are helping the operator to utilize the full production potential of the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.