The purpose of this paper is to investigate ternary multiplications constructed from a binary multiplication, linear twisting maps and a trace function. We provide a construction of ternary Hom-Nambu and Hom-Nambu-Lie algebras starting from a binary multiplication of a Hom-Lie algebra and a trace function satisfying certain compatibility conditions involving twisting maps. We show that mutual position of kernels of twisting maps and the trace play important role in this context, and provide examples of Hom-Nambu-Lie algebras obtained using this construction.
We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of multi linear algebraic structures on the space of smooth functions. In particular, we find algebraic expressions for Weingarten's formula, the Ricci curvature and the Codazzi-Mainardi equations.For matrix analogues of embedded surfaces we define discrete curvatures and Euler characteristics, and a non-commutative Gauss-Bonnet theorem is shown to follow. We derive simple expressions for the discrete Gauss curvature in terms of matrices representing the embedding coordinates, and a large class of explicit examples is provided. Furthermore, we illustrate the fact that techniques from differential geometry can carry over to matrix analogues by proving that a bound on the discrete Gauss curvature implies a bound on the eigenvalues of the discrete Laplace operator.
In order to investigate to what extent the calculus of classical (pseudo-)Riemannian manifolds can be extended to a noncommutative setting, we introduce pseudo-Riemannian calculi of modules over noncommutative algebras. In this framework, it is possible to prove an analogue of Levi-Civita's theorem, stating that there exists at most one torsion-free and metric connection for a given (metric) module, satisfying the requirements of a real metric calculus. Furthermore, the corresponding curvature operator has the same symmetry properties as the classical Riemannian curvature. As our main motivating example, we consider a pseudo-Riemannian calculus over the noncommutative 3-sphere and explicitly determine the torsion-free and metric connection, as well as the curvature operator together with its scalar curvature.
Abstract. We present a procedure to construct (n + 1)-Hom-Nambu-Lie algebras from n-Hom-Nambu-Lie algebras equipped with a generalized trace function. It turns out that the implications of the compatibility conditions, that are necessary for this construction, can be understood in terms of the kernel of the trace function and the range of the twisting maps. Furthermore, we investigate the possibility of defining (n + k)-Lie algebras from n-Lie algebras and a k-form satisfying certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.