AbstractThis work seeks to remedy two deficiencies in the current nucleic acid nanotechnology software environment: the lack of both a fast and user-friendly visualization tool and a standard for structural analyses of simulated systems. We introduce here oxView, a web browser-based visualizer that can load structures with over 1 million nucleotides, create videos from simulation trajectories, and allow users to perform basic edits to DNA and RNA designs. We additionally introduce open-source software tools for extracting common structural parameters to characterize large DNA/RNA nanostructures simulated using the coarse-grained modeling tool, oxDNA, which has grown in popularity in recent years and is frequently used to prototype new nucleic acid nanostructural designs, model biophysics of DNA/RNA processes, and rationalize experimental results. The newly introduced software tools facilitate the computational characterization of DNA/RNA designs by providing multiple analysis scripts, including mean structures and structure flexibility characterization, hydrogen bond fraying, and interduplex angles. The output of these tools can be loaded into oxView, allowing users to interact with the simulated structure in a 3D graphical environment and modify the structures to achieve the required properties. We demonstrate these newly developed tools by applying them to design and analysis of a range of DNA/RNA nanostructures.
The design space for self-assembled multicomponent objects ranges from a solution in which every building block is unique to one with the minimum number of distinct building blocks that unambiguously define the target structure. We develop a pipeline to explore the design spaces for a set of structures of various sizes and complexities. To understand the implications of the different solutions, we analyze their assembly dynamics using patchy particle simulations and study the influence of the number of distinct building blocks, and the angular and spatial tolerances on their interactions, on the kinetics and yield of the target assembly. We show that the resource-saving solution with a minimum number of distinct blocks can often assemble just as well (or faster) than designs where each building block is unique. We further use our methods to design multifarious structures, where building blocks are shared between different target structures. Finally, we use coarse-grained DNA simulations to investigate the realization of multicomponent shapes using DNA nanostructures as building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.