The current paper presents a comprehensive overview of weld quality control and assurance of welded structures where the major failure prevention is due to fatigue loading. It gives the drawbacks and limitation of quality control systems, international weld quality standards, and guidelines used in today's weld production. Furthermore, in recent development in quality control and assurance of welded structures, a new online method is presented. The main target is to enable a complete, online evaluation of large quantities of welds in an accurate and repeatable fashion. Information gathered will not only be used for determining the weld quality level with respect to the fatigue strength but also to be evaluated for use in improved process control, in welding power sources, and robot control systems. It is verified that the new online method, a new laser scanning technology, and algorithms can successfully be used as modern tools for automated unbiased geometrical weld quality assurance and implemented in weld production environment.
In normal production of resistance spot welded galvanised structures, it is difficult to completely avoid surface breaking cracks. Known key factors to cause cracking are zinc coating, electrode wear during subsequent welding and insufficient electrode cooling. In this report, an embrittlement mechanism was investigated that could be coupled to the galvanisation method for dual phase steels. With identical bulk material and weld parameters, the first 50 spot welds were crack free with electrogalvanised coating, while only 10 out of 50 were crack free with hot dip galvanised coating. Energy dispersive X-ray spectroscopy analysis of the worn electrode surfaces used for welding of the hot dip galvanised coating revealed areas of aluminium oxide. Since aluminium oxide is a very strong isolator, the electrical resistance will increase, which in turn is suggested to increase the surface temperature of the spot weld and thereby increase the probability for liquid metal embrittlement and surface cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.