Size-selective mortality due to harvesting is a threat to numerous exploited species, but how it affects the ecosystem remains largely unexplored. Here, we used a pond mesocosm experiment to assess how evolutionary responses to opposite size-selective mortality interacted with the environment (fish density and light intensity used as a proxy of resource availability) to modulate fish populations, prey community composition and ecosystem functions. We used medaka ( Oryzias latipes ) previously selected over 10 generations for small size (harvest-like selection; small-breeder line) or large size (large-breeder line), which displayed slow somatic growth and early maturity or fast somatic growth and late maturity, respectively. Large-breeder medaka produced more juveniles, which seemed to grow faster than small-breeder ones but only under high fish density. Additionally, large-breeder medaka had an increased impact on some benthic prey, suggesting expanded diet breadth and/or enhanced foraging abilities. As a consequence, increased light stimulated benthic algae biomass only in presence of large-breeder medaka, which were presumably better at controlling benthic grazers. Aggregated effect sizes at the community and ecosystem levels revealed that the ecological effects of medaka evolution were of similar magnitude to those induced by the environment and fish introduction. These findings indicate the important environmental dependency of evolutionary response to opposite size-selective mortality on higher levels of biological organizations.
Gut microbiome diversity and functions are jointly shaped by the host's genetic background and environmental conditions, but the consequences of this interaction are still unclear. Unravelling the effect of the interaction between evolution and environment on the gut microbiome is particularly relevant considering the unprecedented level of human-driven disruption on the ecological and evolutionary trajectories of species. Here, we aimed to evaluate whether size-selective mortality influences the gut microbiome of medaka (Oryzias latipes), how environment conditions modulate the effect of the genetic background of medaka on their microbiota, and the association between microbiome diversity and medaka fitness. To do so, we studied two lineages of medaka that were raised under antagonistic size-selective regimes for 10 generations (i.e. the largest or the smallest breeders were removed to mimic fishing-like or natural mortality). In pond mesocosms, the two lineages were subjected to contrasting population density and light intensity (i.e. used as a proxy of primary production, hence resource availability). We observed significant differences in the gut microbiome composition and richness between the two lines, and this effect was mediated by light intensity. Indeed, the bacterial richness of fishing-like medaka (small-breeder line) was reduced by 34% under low-light conditions compared to high-light conditions, while it remained unchanged in natural mortality-selected medaka (large-breeder line). However, the observed changes in bacterial richness did not correlate with changes in growth rate or body condition, possibly due to functional redundancy among the microbial taxa residing in the gut. Given the growing evidence about the gut microbiomes importance to host health, more in-depth studies are required to fully understand the role of the microbiome in size-selected organisms and the possible ecosystem-level consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.