Cocoa is a food ingredient that is important for the contribution of flavor to foods but is also associated with potential health benefits. The chemistry thought to be responsible for its cardiovascular health benefits is the flavanol (flavan-3-ol) antioxidants. Evidence from the literature indicates that natural cocoas are high in flavanols, but when the cocoa is processed with alkali, also known as Dutch processing or Dutching, the flavanols are substantially reduced. This paper provides a survey of the physical and chemical composition of representative natural cocoas and lightly, medium, and heavily alkalized cocoas. As part of the survey, both brown/black and red/brown alkali-processed cocoas were measured. Natural cocoa powders have an extractable pH of 5.3-5.8. Alkalized cocoa powders were grouped into lightly treated (pH 6.50-7.20), medium-treated (pH 7.21-7.60), and heavily treated (pH 7.61 and higher). The natural, nonalkalized powders had the highest ORAC and total polyphenols and flavanols (including procyanidins). These chemical measurements showed a linear decrease as the extractable pH of the cocoa powder increased. Likewise, the flavanol monomers, oligomers, and polymers all showed a linear decrease with increasing pH of the final cocoa powder. When brown/black cocoa powders were compared to red cocoa powders, similar decreases in flavanols were observed with increased alkalization. The average total flavanol contents were 34.6 +/- 6.8 mg/g for the natural cocoas, 13.8 +/- 7.3 mg/g for the lightly processed cocoas, 7.8 +/- 4.0 mg/g for the medium processed cocoas, and 3.9 +/- 1.8 mg/g for the heavily processed cocoa powders. The observed linear and predictable impact of alkalization on flavanol content is discussed with respect to other reports in the literature as well as what implications it may have on diet and food manufacturing.
Dietary resveratrol (3,4',5-trihydroxystilbene) has been implicated in the health benefits associated with grapes and red wine, more specifically with potential benefits for metabolic syndrome, energy use, and increased endurance. Levels of trans-resveratrol and its glucoside, trans-piceid, were determined in 19 top selling commercially available cocoa-containing and chocolate products from the U.S. market. Amounts of trans-resveratrol and trans-piceid were closely correlated with the amount of nonfat cocoa solids (NFCS) in the cocoa-containing products. Among these products, trans-resveratrol levels were highest in cocoa powders (1.85 +/- 0.43 microg/g), followed by unsweetened baking chocolates (1.24 +/- 0.22), semisweet chocolate baking chips (0.52 +/- 0.14), dark chocolates (0.35 +/- 0.08), milk chocolates (0.10 +/- 0.05), and chocolate syrups (0.09 +/- 0.02). These cocoa-containing and chocolate products have about 3-5 times more trans-piceid than trans-resveratrol. Levels of trans-piceid were highest in the cocoa powders (7.14 +/- 0.80 microg/g), followed by unsweetened baking chocolates (4.04 +/- 0.14), semisweet chocolate baking chips (2.01 +/- 0.18), dark chocolates (1.82 +/- 0.36), milk chocolates (0.44 +/- 0.06), and chocolate syrups (0.35 +/- 0.06). On an equal weight basis, cocoa powder had about half as much trans-resveratrol as the average California red wine. On a per serving basis, cocoa-containing and chocolate products had less trans-resveratrol than red wine and grape juice but more than roasted peanuts. Overall, these cocoa-containing and chocolate products rank second after red wines and grape juice in foods with the highest levels of total trans-resveratrol in the diet.
The comparative bioavailability of cocoa butter (a predominantly saturated fat) and corn oil (a predominantly unsaturated fat) was determined in male Sprague-Dawley rats by analysis of total fecal lipids following ad libitum feeding of purified diets containing 5, 10 and 20% cocoa butter or corn oil for 2 wk. Fecal lipid elimination was significantly increased (P less than 0.05) in each cocoa butter group when compared with the corresponding corn oil group, resulting in lower digestibility coefficients for cocoa butter (59-72%) than for corn oil (93-97%). Body weight gain and food intake data were similar among all treatment groups. Fecal fatty acid profiles in rats fed corn oil diets consisted primarily of 27-34% palmitic acid (16:0), 22-32% stearic acid (18:0) and 25-37% oleic acid (18:1). Palmitic, oleic and linoleic acids were also the primary fatty acids stored in epididymal fat tissue from corn oil-fed rats. In contrast, fecal fatty acids in animals fed cocoa butter diets consisted of 31-37% palmitic acid and 58-64% stearic acid; oleic acid was the major fatty acid stored in epididymal fat tissue. These results indicate that the decreased digestibility of cocoa butter is largely a result of its fatty acid composition. This reduced bioavailability of cocoa butter may be at least partially responsible for its previously described neutral effect on serum cholesterol.
Little is known about the effects of common cooking processes on cocoa flavanols. Antioxidant activity, total polyphenols (TP), flavanol monomers, and procyanidin oligomers were determined in chocolate frosting, a hot cocoa drink, chocolate cookies, and chocolate cake made with natural cocoa powder. Recoveries of antioxidant activity, TP, flavanol monomers, and procyanidins ranged from 86% to over 100% in the chocolate frosting, hot cocoa drink, and chocolate cookies. Losses were greatest in the chocolate cake with recoveries ranging from 5% for epicatechin to 54% for antioxidant activity. The causes of losses in baked chocolate cakes were investigated by exchanging baking soda with baking powder or combinations of the 2 leavening agents. Use of baking soda as a leavening agent was associated with increased pH and darkening color of cakes. Losses of antioxidant activity, TP, flavanol monomers, and procyanidins were associated with an increased extractable pH of the baked cakes. Chocolate cakes made with baking powder for leavening resulted in an average extractable pH of 6.2 with essentially complete retention of antioxidant activity and flavanol content, but with reduced cake heights and lighter cake color. Commercially available chocolate cake mixes had final pHs above 8.3 and contained no detectable monomeric flavanols after baking. These results suggest that baking soda causes an increase in pH and subsequent destruction of flavanol compounds and antioxidant activity. Use of an appropriate leavening agent to moderate the final cake pH to approximately 7.25 or less results in both good leavening and preservation of cocoa flavanols and procyanidins.
The comparative absorption of cocoa butter (25.5% C16:0, 34.4% C18:0, 34.4% C18:1, 3.4% C18:2) and corn oil (11.4% C16:0, 2.0% C18:0, 26.4% C18:1, 60.0% C18:2) was assessed in six healthy male subjects. During 3-d experimental diet periods, free-living subjects consumed either cocoa butter or corn oil as virtually the sole source of dietary fat, provided at 40% of the total energy intake in the form of specially formulated cookies. Fat absorption was determined by quantifying total fecal lipid excretion over the 3-d period. Total fecal lipid and fecal fatty acids were determined. The percentage of fat excreted was significantly higher (p less than or equal to 0.001) when subjects consumed the cocoa butter (10.8 +/- 3.2%) vs the corn oil (3.5 +/- 1.0%) diet. These results indicate that the digestibility of cocoa butter is significantly less than corn oil and may explain, in part, previous reports of a neutral effect of dietary cocoa butter on plasma cholesterol concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.