We consider a simplified version of the problem of insider trading in a financial market. We approach it by means of anticipating stochastic calculus and compare the use of the Hitsuda-Skorokhod, the Ayed-Kuo, and the Russo-Vallois forward integrals within this context. Our results give some indication that, while the forward integral yields results with a suitable financial meaning, the Hitsuda-Skorokhod and the Ayed-Kuo integrals do not provide an appropriate formulation of this problem. Further results regarding the use of the Ayed-Kuo integral in this context are also provided, including the proof of the fact that the expectation of a Russo-Vallois solution is strictly greater than that of an Ayed-Kuo solution. Finally, we conjecture the explicit solution of an Ayed-Kuo stochastic differential equation that possesses discontinuous sample paths with finite probability.2010 Mathematics Subject Classification. 60H05, 60H07, 60H10, 60H30, 91G80.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.