Ricin is a plant toxin that is a CDC level B biothreat. Our recombinant ricin A chain vaccine (RiVax), which contains mutations in both known toxic sites, has no residual toxicity at doses at least 800 times the immunogenic dose. RiVax without adjuvant given intramuscularly (i.m.) protected mice against intraperitoneally administered ricin. Furthermore the vaccine without alum was safe and immunogenic in human volunteers. Here we describe the development of gavage and aerosol ricin challenge models in mice and demonstrate that i.m. vaccination protects mice against ricin delivered by either route. Also RiVax protects against aerosol-induced lung damage as determined by histology and lung function tests.
Vascular leak syndrome is a major and often dose-limiting side effect of immunotoxins and cytokines. We postulated that this syndrome is initiated by damage to vascular endothelial cells. Our earlier studies identified a three-amino acid motif that is shared by toxins, ribosome-inactivating proteins, and interleukin-2, all of which cause this problem. We have now generated a panel of recombinant ricin A chains with mutations in this sequence or in amino acids flanking it in the three-dimensional structure. These have been evaluated alone and as immunotoxins for activity, ability to induce pulmonary vascular leak in mice, pharmacokinetics, and activity in tumor-xenografted mice. One mutant was comparable to the ricin A chain used before in all respects except that it did not cause vascular leak at the same dose and, when used as an immunotoxin, was more effective in xenografted SCID mice.
Ricin, a highly potent toxin produced by castor beans, is classified by the Centers for Disease Control and Prevention as a level B biothreat because it is easily produced, readily available, and highly stable. There have been >750 cases of documented ricin intoxication in humans. There is no approved vaccine for ricin. Ricin contains a lectin-binding B chain and a ribotoxic A chain (RTA). In addition to its ribotoxic site, we have identified a separate site on RTA that is responsible for inducing vascular leak syndrome (VLS) in humans. We have generated a recombinant RTA with two amino acid substitutions that disrupt its ribotoxic site (Y80A) and its VLS-inducing site (V76M). This mutant recombinant RTA (named RiVax) was expressed and produced in
Escherichia coli
and purified. When RiVax was injected i.m. into mice it protected them against a ricin challenge of 10 LD
50
s. Preclinical studies in both mice and rabbits demonstrated that RiVax was safe. Based on these results, we have now conducted a pilot clinical trial in humans under an investigational new drug application submitted to the Food and Drug Administration. In this study, three groups of five normal volunteers were injected three times at monthly intervals with 10, 33, or 100 μg of RiVax. The vaccine was safe and elicited ricin-neutralizing Abs in one of five individuals in the low-dose group, four of five in the intermediate-dose group, and five of five in the high-dose group. These results justify further development of the vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.