Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1–4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families—including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic datasets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq datasets for phylogenetics, divergence time estimation and inference of introgression, and we propose a strategy to optimise RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales.
Substitution rate variation among branches can lead to inaccurate reconstructions of evolutionary relationships and obscure the true phylogeny of affected clades. Body mass is often assumed to have a major influence on substitution rate, though other factors such as population size, life history traits, and flight demands are also thought to have an influence. Birds of the order Procellariiformes-which encompasses petrels, storm-petrels and albatrosses-show a striking 900-fold difference in body mass between the smallest and largest members, divergent life history traits, and substantial heterogeneity in mitochondrial substitution rates. Here, we used genome-scale nuclear DNA sequence data from 4365 ultraconserved element loci (UCEs) in 51 procellariiform species to examine whether phylogenetic reconstruction using genome-wide datasets is robust to the presence of rate heterogeneity, and to identify predictors of substitution rate variation. Our results provide a backbone phylogeny for procellariiform seabirds and resolve several controversies about the evolutionary history of the order, demonstrating that albatrosses are basal, storm-petrels are paraphyletic and diving petrels nestled within the Procellariidae. We find evidence of rate variation; however, all phylogenetic analyses using both concatenation and multispecies coalescent approaches recovered the same branching topology, including analyses implementing different clock models, and analyses of the most and least clock-like loci. Overall, we find that rate heterogeneity is little impacted by body mass, population size, age at first breeding, and longevity but moderately correlated with hand-wing index, a proxy for wing shape and flight efficiency. Given our results and the context of the broader literature perhaps it is time that we begin to question the prevailing paradigm that one or a few traits largely explain rate variation and accept instead that substitution rate may be the product of weak interactions among many, potentially taxon-specific, variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.