As metabolic engineering and synthetic biology progress toward reaching the goal of a more sustainable use of biological resources, the need of increasing the number of value-added chemicals that can be produced in industrial organisms becomes more imperative. Exploring, however, the vast possibility of pathways amenable to engineering through heterologous genes expression in a chassis organism is complex and unattainable manually. Here, we present XTMS, a web-based pathway analysis platform available at http://xtms.issb.genopole.fr, which provides full access to the set of pathways that can be imported into a chassis organism such as Escherichia coli through the application of an Extended Metabolic Space modeling framework. The XTMS approach consists on determining the set of biochemical transformations that can potentially be processed in vivo as modeled by molecular signatures, a specific coding system for derivation of reaction rules for metabolic reactions and enumeration of all the corresponding substrates and products. Most promising routes are described in terms of metabolite exchange, maximum allowable pathway yield, toxicity and enzyme efficiency. By answering such critical design points, XTMS not only paves the road toward the rationalization of metabolic engineering, but also opens new processing possibilities for non-natural metabolites and novel enzymatic transformations.
The eukaryotic mariner transposons are currently thought to have no sequence specificity for integration other than to insert within a TA contained in a degenerated [TA](1-4) tract, either in vitro or in vivo. We have investigated the properties of a suspected hotspot for the integration of the mariner Mos1 element, namely the Tn9 cat gene that encodes a chloramphenicol acetyl transferase. Using in vitro and bacterial transposition assays, we confirmed that the cat gene is a preferential target for MOS1 integration, whatever its sequence environment, copy number or chromosomal locus. We also observed that its presence increases transposition rates both in vitro and in bacterial assays. The structural and sequence features that constitute the attractiveness of cat were also investigated. We first demonstrated that supercoiling is essential for the cat gene to be a hot spot. In contrast to the situation for Tc1-like elements, DNA curvature and bendability were not found to affect integration target preferences. We found that Mos1 integrations do not occur randomly along the cat gene. All TA dinucleotides that are preferred for integration were found within either TATA or TA x TA motifs. However, these motifs are not sufficient to constitute an attractive dinucleotide, since four TATA and TA x TA sites are cold spots.
BackgroundThe specific position of functionally related genes along the DNA has been shown to reflect the interplay between chromosome structure and genetic regulation. By investigating the statistical properties of the distances separating such genes, several studies have highlighted various periodic trends. In many cases, however, groups built up from co-functional or co-regulated genes are small and contain wrong information (data contamination) so that the statistics is poorly exploitable. In addition, gene positions are not expected to satisfy a perfectly ordered pattern along the DNA. Within this scope, we present an algorithm that aims to highlight periodic patterns in sparse boolean sequences, i.e. sequences of the type 010011011010... where the ratio of the number of 1's (denoting here the transcription start of a gene) to 0's is small.ResultsThe algorithm is particularly robust with respect to strong signal distortions such as the addition of 1's at arbitrary positions (contaminated data), the deletion of existing 1's in the sequence (missing data) and the presence of disorder in the position of the 1's (noise). This robustness property stems from an appropriate exploitation of the remarkable alignment properties of periodic points in solenoidal coordinates.ConclusionsThe efficiency of the algorithm is demonstrated in situations where standard Fourier-based spectral methods are poorly adapted. We also show how the proposed framework allows to identify the 1's that participate in the periodic trends, i.e. how the framework allows to allocate a positional score to genes, in the same spirit of the sequence score. The software is available for public use at http://www.issb.genopole.fr/MEGA/Softwares/iSSB_SolenoidalApplication.zip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.