Several members of the family Enterobacteriaceae were examined for differences in extreme acid survival strategies. A surprising degree of variety was found between three related genera. The minimum growth pH of Salmonella typhimurium was shown to be significantly lower (pH 4.0) than that of either Escherichia coli (pH 4.4) or Shigella flexneri (pH 4.8), yet E. coli and S. flexneri both survive exposure to lower pH levels (2 to 2.5) than S. typhimurium (pH 3.0) in complex medium. S. typhimurium and E. coli but not S. flexneri expressed low-pHinducible log-phase and stationary-phase acid tolerance response (ATR) systems that function in minimal or complex medium to protect cells to pH 3.0. All of the organisms also expressed a pH-independent general stress resistance system that contributed to acid survival during stationary phase. E. coli and S. flexneri possessed several acid survival systems (termed acid resistance [AR]) that were not demonstrable in S. typhimurium. These additional AR systems protected cells to pH 2.5 and below but required supplementation of minimal medium for either induction or function. One acid-inducible AR system required oxidative growth in complex medium for expression but successfully protected cells to pH 2.5 in unsupplemented minimal medium, while two other AR systems important for fermentatively grown cells required the addition of either glutamate or arginine during pH 2.5 acid challenge. The arginine AR system was only observed in E. coli and required stationary-phase induction in acidified complex medium. The product of the adi locus, arginine decarboxylase, was responsible for arginine-based acid survival.
Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with an ␣ level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F 1 F o and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid consumption and proton export, while coinducing oxidative stress and heat shock regulons; (ii) high pH accelerates proton import, while repressing the energy-expensive flagellar and chemotaxis regulons; and (iii) pH differentially regulates a large number of periplasmic and envelope proteins.
Cytoplasmic pH and periplasmic pH of Escherichia coli cells in suspension were observed with 4-s time resolution using fluorimetry of TorA-green fluorescent protein mutant 3* (TorA-GFPmut3*) and TetR-yellow fluorescent protein. Fluorescence intensity was correlated with pH using cell suspensions containing 20 mM benzoate, which equalizes the cytoplasmic pH with the external pH. When the external pH was lowered from pH 7.5 to 5.5, the cytoplasmic pH fell within 10 to 20 s to pH 5.6 to 6.5. Rapid recovery occurred until about 30 s after HCl addition and was followed by slower recovery over the next 5 min. As a control, KCl addition had no effect on fluorescence. In the presence of 5 to 10 mM acetate or benzoate, recovery from external acidification was diminished. Addition of benzoate at pH 7.0 resulted in cytoplasmic acidification with only slow recovery. Periplasmic pH was observed using TorA-GFPmut3* exported to the periplasm through the Tat system. The periplasmic location of the fusion protein was confirmed by the observation that osmotic shock greatly decreased the periplasmic fluorescence signal by loss of the protein but had no effect on the fluorescence of the cytoplasmic protein. Based on GFPmut3* fluorescence, the pH of the periplasm equaled the external pH under all conditions tested, including rapid acid shift. Benzoate addition had no effect on periplasmic pH. The cytoplasmic pH of E. coli was measured with 4-s time resolution using a method that can be applied to any strain construct, and the periplasmic pH was measured directly for the first time.In order to colonize the human gastrointestinal tract, the enteric bacterium Escherichia coli must be able to grow between pH 4.5 and pH 9 (7). Over this wide pH range, E. coli preserves enzyme activity, as well as protein and nucleic acid stability, by maintaining the cytoplasmic pH in the range from pH 7.2 to 7.8 (26,27,32). E. coli responds rapidly to intracellular pH change; after acidification of the external environment, the intracellular pH of E. coli begins to recover within 1 min, and full recovery occurs within 5 min (28). The efficiency with which E. coli maintains pH homeostasis has been attributed to a combination of constitutive and regulated mechanisms, but the essential requirements remain poorly understood (7,9,14,18,28). Some components of pH homeostasis act in the presence of chloramphenicol, whereas others require ongoing protein synthesis (10).Previously, cytoplasmic pH has been measured using 31 P nuclear magnetic resonance (NMR) of titratable phosphate and methylphosphonate (28) and through transmembrane equilibration of radiolabeled permeant acids (32). Both methods have limitations. Radiolabeled permeant acids have low sensitivity, and they measure only the transmembrane pH difference; they do not measure cytoplasmic pH independent of external pH.31 P NMR requires highly concentrated cell suspensions, typically suspensions with optical densities at 600 nm (OD 600 ) of 20 to 200.The advent of highly pH-sensitive fluorescent proteins...
Escherichia coli K-12 strains and Shigellaflexneri grown to stationary phase can survive several hours at pH 2 to 3, which is considerably lower than the acid limit for growth (about pH 4.5). A 1.3-kb fragment cloned from S. flexneri conferred acid resistance on acid-sensitive E. coli HB101; sequence data identified the fragment as a homolog of rpoS, the growth phase-dependent sigma factor Ci38. The clone also conferred acid resistance on S.flexneri rpoS::TnlO but not on Salmonella typhimurium. E. coli and S.flexneri strains containing wild-type rpoS maintained greater internal pH in the face of a low external pH than strains lacking functional rpoS, but the ability to survive at low pH did not require maintenance of a high transmembrane pH difference. Aerobic stationary-phase cultures of E. coli MC4100 and S. flexneri 3136, grown initially at an external pH range of 5 to 8, were 100% acid resistant (surviving 2 h at pH 2.5). Aerobic log-phase cultures grown at pH 5.0 were acid resistant; survival decreased 10-to 100-fold as the pH of growth was increased to pH 8.0. Extended growth in log phase also decreased acid resistance substantially. Strains containing rpoS::TnJO showed partial acid resistance when grown at pH 5 to stationary phase; log-phase cultures showed <0.01% acid resistance. When grown anaerobically at low pH, however, the rpoS::TnlO strains were acid resistant. E. coli MC4100 also showed resistance at alkaline pH outside the growth range (base resistance). Significant base resistance was observed up to pH 10.2. Base resistance was diminished by rpoS::TnlO and by the presence of Na+. Base resistance was increased by an order of magnitude for stationary-phase cultures grown in moderate base (pH 8) compared with those grown in moderate acid (pH 5). Anaerobic growth partly restored base resistance in cultures grown at pH 5 but not in those grown at pH 8. Thus, both acid resistance and base resistance show dependence on growth pH and are regulated by rpoS under certain conditions. For acid resistance, and in part for base resistance, the rpoS requirement can be overcome by anaerobic growth in moderate acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.