The renin-angiotensin system (RAS) plays an important role in the regulation of inflammation and in the progression of chronic kidney disease. Accumulation of inflammatory cells into the renal parenchyma has been a hallmark of chronic kidney disease; however, little is known concerning the presence and the function of RAS elements in T and natural killer (NK) cells. Here is reported a co-stimulatory effect of angiotensin II (AngII) by showing an augmentation of mitogen and anti-CD3-stimulated T and NK cell proliferation with AngII treatment. Angiotensinogen and AngI also generated the same effect, suggesting that NK and T cells have functional renin and angiotensin-converting enzyme activity. Indeed, they express renin, the renin receptor, angiotensinogen, and angiotensin-converting enzyme by mRNA analysis. Flow cytometric analysis and Western blot revealed angiotensin receptor 2 (AT 2 ) expression in T and NK cells, whereas AT 1 expression was found in T and NK cells and monocytes by Western blot. These receptors were shown to be functional in calcium signaling, chemotaxis, and proliferation. However, AT 1 and AT 2 antagonists alone or in combination were unable to abrogate completely the effects of AngII, suggesting that another AngII receptor may also be functional in leukocytes. This is the first study to show that T and NK cells are fully equipped with RAS elements and are potentially capable of producing and delivering AngII to sites of inflammation. Because their chemotaxis is enhanced by AngII, this creates a potential inflammatory amplification system. B ecause of its hemodynamic effects, angiotensin II (AngII) plays a central role in the progression of chronic kidney diseases (CKD) and ischemic heart disease (1,2). AngII has been shown to be a potent proinflammatory molecule, and the beneficial effects of renin-angiotensin system (RAS) blockade are due not only to lowering BP but also to a reduction in inflammation (3). One of the main features of CKD is the accumulation of inflammatory cells, which plays a crucial role in disease progression (4), and recruitment of macrophages to the kidney through AngII infusion has been reported in various rodent models (5,6). In both diabetic nephropathy and atherosclerosis, monocytes/macrophages have been reported to play a key role (7-9). Monocytes have also been the primary focus of studies that have examined the interaction of AngII and inflammatory cells (10). However, the importance of T, natural killer (NK), and dendritic cells (DC) in inflammation and vascular disease has only recently begun to be appreciated. DC have been shown to present oxidized LDL to T cells, generating autoreactive T cells and promoting arterial injury (11). NK cells participate through the production of proatherogenic cytokines such as IFN-␥ (12). Previous studies on AngII-induced inflammation and its role in kidney disease primarily focused on the induction of inflammatory molecules and the paracrine effects of AngII in vascular remodeling and tissue fibrosis (13,14). Despite these ...
Chronic granulomatous diseases (CGDs) are characterized by recurrent infections resulting from impaired superoxide production by a phagocytic cell, nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) oxidase. Complementary DNAs were cloned that encode the 67-kilodalton (kD) cytosolic oxidase factor (p67), which is deficient in 5% of CGD patients. Recombinant p67 (r-p67) partially restored NADPH oxidase activity to p67-deficient neutrophil cytosol from these patients. The p67 cDNA encodes a 526-amino acid protein with acidic middle and carboxyl-terminal domains that are similar to a sequence motif found in the noncatalytic domain of src-related tyrosine kinases. This motif was recently noted in phospholipase C-gamma, nonerythroid alpha-spectrin (fodrin), p21ras-guanosine triphophatase-activating protein (GAP), myosin-1 isoforms, yeast proteins cdc-25 and fus-1, and the 47-kD phagocyte oxidase factor (p47), which suggests the possibility of common regulatory features.
The chemokine receptor CX3CR1 is a proinflammatory leukocyte receptor specific for the chemokine fractalkine (FKN or CX3CL1). In two retrospective studies, CX3CR1 has been implicated in the pathogenesis of atherosclerotic cardiovascular disease (CVD) based on statistical association of a common receptor variant named CX3CR1-M280 with lower prevalence of atherosclerosis, coronary endothelial dysfunction, and acute coronary syndromes. However, the general significance of CX3CR1-M280 and its putative mechanism of action have not previously been defined. Here we show that FKN-dependent cell-cell adhesion under conditions of physiologic shear is severely reduced in cells expressing CX3CR1-M280. This was associated with marked reduction in the kinetics of FKN binding as well as reduced FKN-induced chemotaxis of primary leukocytes from donors homozygous for CX3CR1-M280. We also show that CX3CR1-M280 is independently associated with a lower risk of CVD (adjusted odds ratio, 0.60, P = 0.008) in the Offspring Cohort of the Framingham Heart Study, a long-term prospective study of the risks and natural history of this disease. These data provide mechanism-based and consistent epidemiologic evidence that CX3CR1 may be involved in the pathogenesis of CVD in humans, possibly by supporting leukocyte entry into the coronary artery wall. Moreover, they suggest that CX3CR1-M280 is a genetic risk factor for CVD
Hematopoietic stem cells (HSCs) lose marrow reconstitution potential during ex vivo culture. HSC migration to stromal cell-derived factor (SDF)-1 (CXCL12) correlates with CXC chemokine receptor 4 (CXCR4) expression and marrow engraftment. We demonstrate that mobilized human CD34 + peripheral blood stem cells (CD34 + PBSCs) lose CXCR4 expression during prolonged culture. We transduced CD34 + PBSCs with retrovirus vector encoding human CXCR4 and achieved 18-fold more CXCR4 expression in over 87% of CD34 + cells. CXCR4-transduced cells yielded increased
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.