During the COVID-19 pandemic, high consumption of antivirals, antibiotics, antiparasitics, antiprotozoals, and glucocorticoids used in the treatment of this virus has been reported. Conventional treatment systems fail to efficiently remove these contaminants from water, becoming an emerging concern from the environmental field. Therefore, the objective of the present work is to address the current state of the literature on the presence and removal processes of these drugs from water bodies. It was found that the concentration of most of the drugs used in the treatment of COVID-19 increased during the pandemic in water bodies. Before the pandemic, Azithromycin concentrations in surface waters were reported to be in the order of 4.3 ng L
−1
, and during the pandemic, they increased up to 935 ng L
−1
. Laboratory scale studies conclude that adsorption and advanced oxidation processes (AOPs) can be effective in the removal of these drugs. Up to more than 80% removal of Azithromycin, Chloroquine, Ivermectin, and Dexamethasone in aqueous solutions have been reported using these processes. Pilot-scale tests achieved 100% removal of Azithromycin from hospital wastewater by adsorption with powdered activated carbon. At full scale, treatment plants supplemented with ozonation and artificial wetlands removed all Favipiravir and Azithromycin, respectively. It should be noted that hybrid technologies can improve removal rates, process kinetics, and treatment cost. Consequently, the development of new materials that can act synergistically in technically and economically sustainable treatments is required.
Drinking water sources are increasingly subject to various types of contamination due to anthropogenic factors and require proper treatment to remove disease-causing agents. Public drinking water systems use different treatment methods to provide safe and quality drinking water to populations. However, they are ineffective in removing contaminants that are considered a danger to the environment and therefore to humans. Several alternative treatment processes have been proposed, such as membrane filtration, as final purification methods. This paper aims to summarize the type of pollutant compounds, filtration processes, and membranes that have been most studied in this area with particular emphasis on how the modification of membranes, either the manufacturing process or the incorporation of nanomaterials, influences their performance.
This study proposes the use of activated charcoal made from Umba uba wood as an adsorbent for the removal of naphthenic acid in an aviation kerosene model mixture. The activated charcoal was characterised as mesoporous with a carbon graphite profile and presented pH pzc equal to 10.5. The best working conditions were obtained for activated charcoal levels of <0.09 mm and 300 r min À1. The system reached the equilibrium after 360 min, without significant statistical difference for the pseudo-first-and pseudo-second-order kinetic models. The Weber-Morris and Boyd models corroborated the conclusion that adsorption is not controlled only by the intraparticle diffusion step. For the equilibrium study, the adsorptive capacity obtained was of 1.1 g g À1 , with the Brunauer-Emmett-Teller model better correlating with the experimental data. Given the results obtained, the activated charcoal demonstrated to have a remarkable potential for removing naphthenic acid in an aviation kerosene model mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.