Despite considerable literature on the functional anatomy of the hominoid upper limb, there are no quantitative approaches relating to bone design and the resulting muscular-activity enhancement. The purpose of this study is to quantitatively analyze the relationship between the rotational efficiency of the pronator teres muscle and the design of the skeletal structures on which it acts. Using conventional scan images of a human forearm for three rotational positions, this study develops an original biomechanical model that defines rotational efficiency as a mathematical function expressing a geometrical relationship between the origin and insertion muscular sites. The results show that this parameter varies throughout the entire pronation range, being maximal when the forearm lies around its functional position. Moreover, the rotational-efficiency formula allows us to demonstrate, by several simulation conditions, that an improvement in pronation efficiency is derived from a large shaft radius curvature, a large humeral medial epicondyle, and a more proximal pronator teres radial attachment. The fact that forearm pronation efficiency can be inferred, even quantified, throughout the entire rotational range, by applying the biomechanical model developed here allows us to undertake anatomical approaches in the field of Evolutionary Anthropology, to interpret more precisely how skeletal design is related to upper-limb function in extant and fossil primate taxa.
This work presents an original methodology for analyzing forearm-pronation efficiency from skeletal remains and its variation with regard to changes in the elbow position. The methodology is based on a biomechanical model that defines rotational efficiency as a mathematical function expressing a geometrical relationship between the origin and insertion of the pronator teres. The methodology uses humeral distal epiphysis photography, from which the geometrical parameters for the efficiency calculus can be obtained. Rotational efficiency is analyzed in a human specimen and in a living nonhuman hominoid (Symphalangus syndactylus) for a full elbow extension (180 degrees) and an intermediate elbow position (90 degrees). In both specimens, the results show that this rotational-efficiency parameter varies throughout the entire rotational range and show a dependency on the elbow joint position. The rotational efficiency of the siamang's pronator teres is less affected by flexion of the forearm than that of the human. The fact that forearm-pronation efficiency can be inferred, even quantified, allows us to interpret more precisely the functional and evolutionary significance of upper-limb skeletal design in extant and fossil primate taxa.
Pronosupination is a component of the hominoid orthograde corporal plane that enables primates to execute efficient and sure locomotion in their habitat and is an essential movement for the development of manipulative capacities. We analyze human variability in the rotational efficiency of the pronator teres muscle by applying the biomechanical model created by Galt es et al. (Am J Phys Anthropol 2008; 135:293-300; Am J Phys Anthropol 2009a; 140:589-594) to skeletal remains of a human sample (N ¼ 29) and three nonhuman hominoid specimens (chimpanzee, gorilla, and orangutan) by means of 3D technology. We aim to examine whether there is a distinctive human pattern of rotational efficiency and determine which structural features of the upper-limb bones have the greatest influence on the determination of rotational efficiency. Our results show that the human pattern differs from efficiencies observed in nonhuman hominoids, which may be interpreted in the light of morphofunctional adaptations. We identify medial epicondylar form as the key structure of the upper-limb bones for the determination of the rotational efficiency of the forearm. Results indicate that the more medially projected epicondyle of nonhuman hominoids relative to humans leads to higher values of maximum rotational efficiency. Moreover, the orientation of the medial epicondyle determines the pronounced differences in the position of the maximum efficiencies in the pronosupination range between humans and the studied nonhuman hominoids. Proximodistal orientation of the medial epicondyle is suggested to be a more appropriate feature for distinguishing between humans and nonhuman hominoids than anteroposterior orientation and, therefore, for inferring behavioral aspects from skeletal remains and fossils of primate upper-limb bones.
A recent study (Galtés et al.: Am J Phys Anthropol 135 (2008) 293-300) demonstrated that during pronation, pronator teres exerts a favorable force for radial lateral bending. On the basis of this finding, we hypothesized that the pattern of muscular loading exerted on the radius by this muscle might play a role as a mechanical stimulus involved in radial bowing. The current work relates the hypertrophy of the forearm muscles to the degree of lateral curvature of the radial diaphysis. The analysis is based on an original osteometrical index to estimate radial curvature, and it applies a visual reference method to grade the osteological appearance of 10 entheses of 104 radii from archaeological and contemporary samples. Using these morphological data as an indirect method to measure the association between muscular hypertrophy and bone curvature, this study reveals that the pattern of muscular loading exerted on the apex of the radial shaft by the pronator teres muscle may play an important role as a mechanical stimulus involved in diaphyseal bowing.
The relationship between the mechanical loading undergone by a bone and its form has been widely assumed as a premise in studies aiming to reconstruct behavioral patterns from skeletal remains. Nevertheless, this relationship is complex due to the existence of many factors affecting bone structure and form, and further research combining structural and shape characteristics is needed. Using two-block PLS, which is a test to analyze the covariance between two sets of variables, we aim to investigate the relationship between upper-limb entheseal changes, cross-sectional properties, and contour shape of the humeral diaphysis. Our results show that individuals with strongly marked entheseal changes have increased diaphyseal rigidities. Bending rigidities are mainly related to entheseal changes of muscles that cross the shoulder. Moreover, the entheseal changes of muscles that participate in the rotation of the arm are related to mediolaterally flatter and ventrodorsally broader humeral shapes in the mid-proximal diaphysis. In turn, this diaphyseal shape is related to diaphyseal rigidity, especially to bending loadings. The shape of the diaphysis of the rest of the humerus does not covary either with rigidity or with entheseal changes. The results indicate that large muscular scars, such as those found in the mid-proximal diaphyses, seem to be related to diaphyseal shape, whereas this relationship is not seen for areas with less direct influences of powerful muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.