Keggin heteropolyanions [XM(12)O(40)](n-) have various isomeric structures, alpha and beta being the most common. Conventionally, the alpha structure appears to be the most stable, but calculations carried out at the DFT level for X = P(V), Si(IV), Al(III), As(V), Ge(IV), and Ga(III) and M = W(VI) and Mo(VI) show that this stability depends on several factors, particularly on the nature of the heteroatom (X) and the total charge of the cluster. In this paper, we apply the clathrate model to the Keggin molecule to carry out a fragment-interaction study to elucidate when and why the traditional relative stability of various isomers can be inverted. The fully oxidized anions that have inverted the traditional stability trend in this series are [AlW(12)O(40)](5-) and [GaW(12)O(40)](5-), both of which contain a third-group heteroatom and an overall charge of -5. beta-isomers are always more easily reduced than alpha-isomers. This experimental observation suggests that reduction favors the stability of beta-isomers and one of the most important results of this study is that the alpha/beta inversion is achieved in most cases after the second reduction. The alpha- and beta-isomers may have different properties because the energy of the LUMO, a symmetry-adapted d(xy)-metal orbital, is different.
Calculations based on density functional theory (DFT) have been carried out to investigate the electronic and magnetic properties of the alpha-Keggin anions mentioned in the title. The atomic populations and the distribution of the electron density computed for the studied clusters support the hypothesis that an oxidized Keggin anion is an XO(4)(n-) clathrate inside a neutral M(12)O(36) cage. The energy gap between the band of occupied orbitals, formally delocalized over the oxo ligands, and the unoccupied d-metal orbitals, delocalized over the addenda, has been found to be independent of the central ion. However, substitution of a W or a Mo by V modifies the relative energy of the LUMO and then induces important changes in the redox properties of the cluster. In agreement with the most recent X-ray determination of [Co(III)W(12)O(40)](5-) and with the simplicity of the (183)W NMR and (17)O NMR spectra observed for this anion the calculations suggest that [Co(III)W(12)O(40)](5-) has a slightly distorted T(d ) geometry. For the parent cluster [CoW(12)O(40)](6-) the quadruplet corresponding to the anion encapsulating a Co(II) was found to be approximately 1 eV more stable than the species formed by a Co(III) and 1 e delocalized over the sphere of tungstens. The one-electron reduction of [Co(II)W(12)O(40)](6-) and [Fe(III)W(12)O(40)](5-) leads to the formation of the 1 e blue species [Co(II)W(12)O(40)](7-) and [Fe(III)W(12)O(40)](6-). The blue-iron cluster is considerably antiferromagnetic, and in full agreement with this behavior the low-spin state computed via a Broken Symmetry approach is 196 cm(-1) lower than the high-spin solution. In contrast, the cobalt blue anion has a low ferromagnetic coupling with an S-T energy gap of +20 cm(-1). This blue species is more stable than the alternative reduction product [Co(I)W(12)O(40)](7-) by more than 0.7 eV.
[PMo12O40(VO)2]5-
is a highly reduced cluster with eight d metal electrons. The
localization−delocalization nature of d metal electrons is one of the
points of interest in reduced polyoxoanions. We report DFT
calculations which suggest that the oxidation state of the V atoms is
+4 and that the other six metal electrons are delocalized between the
12 Mo atoms. The calculations also provide evidence that the anion
[PMo12O40(VO)2]5-
should be paramagnetic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.