Objective:The objectives of this study were to measure the global impact of the pandemic on the volumes for intravenous thrombolysis (IVT), IVT transfers, and stroke hospitalizations over 4 months at the height of the pandemic (March 1 to June 30, 2020) compared with two control 4-month periods.Methods:We conducted a cross-sectional, observational, retrospective study across 6 continents, 70 countries, and 457 stroke centers. Diagnoses were identified by their ICD-10 codes and/or classifications in stroke databases.Results:There were 91,373 stroke admissions in the 4 months immediately before compared to 80,894 admissions during the pandemic months, representing an 11.5% (95%CI, -11.7 to - 11.3, p<0.0001) decline. There were 13,334 IVT therapies in the 4 months preceding compared to 11,570 procedures during the pandemic, representing a 13.2% (95%CI, -13.8 to -12.7, p<0.0001) drop. Interfacility IVT transfers decreased from 1,337 to 1,178, or an 11.9% decrease (95%CI, -13.7 to -10.3, p=0.001). Recovery of stroke hospitalization volume (9.5%, 95%CI 9.2-9.8, p<0.0001) was noted over the two later (May, June) versus the two earlier (March, April) pandemic months. There was a 1.48% stroke rate across 119,967 COVID-19 hospitalizations. SARS-CoV-2 infection was noted in 3.3% (1,722/52,026) of all stroke admissions.Conclusions:The COVID-19 pandemic was associated with a global decline in the volume of stroke hospitalizations, IVT, and interfacility IVT transfers. Primary stroke centers and centers with higher COVID19 inpatient volumes experienced steeper declines. Recovery of stroke hospitalization was noted in the later pandemic months.
Summary Introduction The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading approach to the identification of novel biological pathways for human disease. To date, GWAS have had been limited by relatively small sample sizes and yielded relatively few loci associated with ischemic stroke The National Institute of Neurological Disorders Stroke Genetics Network (NINDS-SiGN) is an international consortium that has taken a systematic approach to phenotyping and produced the largest ischemic stroke GWAS to date. Methods In order to identify genetic loci associated with ischemic stroke, we performed a two-stage genome-wide association study. The first stage consisted of 16,851 cases with state-of-the-art phenotyping and 32,473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtyped by centrally trained and certified investigators using the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identify samples genotyped on (nearly) identical arrays and of similar genetic ancestral background. Data was cleaned and imputed using dense imputation reference panels generated from whole-genome sequence data. Genome-wide testing was performed within each stratum for each available phenotype, and summary level results were combined using inverse variance-weighted fixed effects meta-analysis. The second stage consisted of in silico look-ups of 1,372 SNPs in 20,941 cases and 364,736 stroke-free controls, with cases previously subtyped using the TOAST classification system according to local standards. The two stages were then jointly analyzed in a final meta-analysis. Findings We identified a novel locus at 1p13.2 near TSPAN2 associated with large artery atherosclerosis (LAA)-related stroke (stage I OR for the G allele at rs12122341 = 1·21, p = 4.50 × 10−8; stage II OR = 1·19, p = 1·30 × 10−9). We also confirmed four loci robustly associated with ischemic stroke and reported in prior studies, including PITX2 and ZFHX3 for cardioembolic stroke, and HDAC9 for LAA stroke. The 12q24 locus near ALDH2, originally associated with all ischemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke. Other loci, including NINJ2, were not confirmed. Interpretation Our results identify a novel LAA-stroke susceptibility gene and now indicate that all loci implicated by GWAS to date are subtype specific. Follow-up studies will be necessary to determine whether the locus near TSPAN2 yields a novel therapeutic approach to stroke prevention. Given the subtype-specificity of these associations, the rich phenotyping available in SiGN is likely to prove vital for further genetic discovery in ischemic stroke. Funding National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH).
Although statins are being used for secondary prevention of ischemic stroke, recent experimental data have shown new pleiotropic effects of these drugs responsible for their role in neuroprotection. We conducted a pilot, double-blind, randomized, multicenter clinical trial to study for the first time safety and efficacy of simvastatin in the acute phase of ischemic stroke. Simvastatin/placebo was given at 3-12 h from symptom onset to 60 patients with cortical strokes. Efficacy on the evolution of several inflammation markers [interleukin (IL)-6, IL-8, IL-10, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, C-reactive protein, sApo/Fas, tumor necrosis factor-alpha, E-selectin, L-selectin and nitrites+nitrates] and neurological outcome was evaluated at baseline, day 1, 3, 5, 7 and 90. No differences were found amongst the biomarkers studied regarding treatment allocation. Although simvastatin patients improved significantly by the third day (46.4% vs. 17.9%, P = 0.022), a non-significant increase in mortality and greater proportion of infections (odds ratio 2.4, confidence interval 1.06-5.4) in the simvastatin group were the main safety concerns. Therefore, a larger clinical trial is needed to confirm the net benefit of this therapeutic approach.
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.