The consistent growth in human life expectancy during the recent years has driven governments and private organizations to increase the efforts in caring for the eldest segment of the population. These institutions have built hospitals and retirement homes that have been rapidly overfilled, making their associated maintenance and operating costs prohibitive. The latest advances in technology and communications envisage new ways to monitor those people with special needs at their own home, increasing their quality of life in a cost-affordable way. The purpose of this paper is to present an Ambient Assisted Living (AAL) platform able to analyze, identify, and detect specific acoustic events happening in daily life environments, which enables the medic staff to remotely track the status of every patient in real-time. Additionally, this tele-care proposal is validated through a proof-of-concept experiment that takes benefit of the capabilities of the NVIDIA Graphical Processing Unit running on a Jetson TK1 board to locally detect acoustic events. Conducted experiments demonstrate the feasibility of this approach by reaching an overall accuracy of 82% when identifying a set of 14 indoor environment events related to the domestic surveillance and patients’ behaviour monitoring field. Obtained results encourage practitioners to keep working in this direction, and enable health care providers to remotely track the status of their patients in real-time with non-invasive methods.
Ambient Assisted Living (AAL) has become a powerful alternative to improving the life quality of elderly and partially dependent people in their own living environments. In this regard, tele-care and remote surveillance AAL applications have emerged as a hot research topic in this domain. These services aim to infer the patients’ status by means of centralized architectures that collect data from a set of sensors deployed in their living environment. However, when the size of the scenario and number of patients to be monitored increase (e.g., residential areas, retirement homes), these systems typically struggle at processing all associated data and providing a reasonable output in real time. The purpose of this paper is to present a fog-inspired distributed architecture to collect, analyze and identify up to nine acoustic events that represent abnormal behavior or dangerous health conditions in large-scale scenarios. Specifically, the proposed platform collects data from a set of wireless acoustic sensors and runs an automatic two-stage audio event classification process to decide whether or not to trigger an alarm. Conducted experiments over a labeled dataset of 7116 s based on the priorities of the Fundació Ave Maria health experts have obtained an overall accuracy of 94.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.