Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag)-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy.
Following up CD49d RO levels with a well-regulated monitoring work scheme is crucial to further identify over-/under-treated patients and to define a safe, personalized natalizumab regimen. © 2017 International Clinical Cytometry Society.
Invariant natural killer T (iNKT) cells develop into three subsets (NKT1, NKT2, and NKT17) expressing a distinct transcription factor profile, which regulates cytokine secretion upon activation. iNKT cell development in the thymus is modulated by signaling lymphocytic activation molecule family (SLAMF) receptors. In contrast to other SLAMF members, Ly9 (SLAMF3) is a non-redundant negative regulator of iNKT cell development. Here, we show that Ly9 influences iNKT cell lineage differentiation. Ly9-deficient mice on a BALB/c background contained a significantly expanded population of thymic NKT2 cells, while NKT1 cells were nearly absent in BALB/c.Ly9 thymus. Conversely, the number of peripheral NKT1 cells in BALB/c.Ly9 mice was comparable to that in wild-type mice, indicating that the homeostasis of the different iNKT cell subsets may have distinct requirements depending on their tissue localization. Importantly, Ly9 absence also promoted NKT2 cell differentiation in the NKT1-skewed C57BL/6 background. Furthermore, treatment of wild-type mice with an agonistic monoclonal antibody directed against Ly9 impaired IL-4 and IFN-γ production and reduced by half the number of spleen iNKT cells, with a significant decrease in the proportion of NKT2 cells. Thus, anti-Ly9 targeting could represent a novel therapeutic approach to modulate iNKT cell numbers and activation.
BackgroundThe Human Cell Differentiation Molecules (HCDM) organizes Human Leukocyte Differentiation Antigen (HLDA) workshops to test and name clusters of antibodies that react with a specific antigen. These cluster of differentiation (CD) markers have provided the scientific community with validated antibody clones, consistent naming of targets and reproducible identification of leukocyte subsets. Still, quantitative CD marker expression profiles and benchmarking of reagents at the single-cell level are currently lacking.ObjectiveTo develop a flow cytometric procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets that is standardized across multiple research laboratories.MethodsA high content framework to evaluate the titration and reactivity of Phycoerythrin (PE)-conjugated monoclonal antibodies (mAbs) was created. Two flow cytometry panels were designed: an innate cell tube for granulocytes, dendritic cells, monocytes, NK cells and innate lymphoid cells (12-color) and an adaptive lymphocyte tube for naive and memory B and T cells, including TCRγδ+, regulatory-T and follicular helper T cells (11-color). The potential of these 2 panels was demonstrated via expression profiling of selected CD markers detected by PE-conjugated antibodies and evaluated using 561 nm excitation.ResultsUsing automated data annotation and dried backbone reagents, we reached a robust workflow amenable to processing hundreds of measurements in each experiment in a 96-well plate format. The immunophenotyping panels enabled discrimination of 27 leukocyte subsets and quantitative detection of the expression of PE-conjugated CD markers of interest that could quantify protein expression above 400 units of antibody binding capacity. Expression profiling of 4 selected CD markers (CD11b, CD31, CD38, CD40) showed high reproducibility across centers, as well as the capacity to benchmark unique clones directed toward the same CD3 antigen.ConclusionWe optimized a procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets. The workflow, bioinformatics pipeline and optimized flow panels enable the following: 1) mapping the expression patterns of HLDA-approved mAb clones to CD markers; 2) benchmarking new antibody clones to established CD markers; 3) defining new clusters of differentiation in future HLDA workshops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.