Halogen bonds, which provide an intermolecular interaction with moderate strength and high directionality, have emerged as a promising tool in the repertoire of non‐covalent interactions. In this review, we provide a survey of the literature where halogen bonding was used for the fabrication of supramolecular networks on solid surfaces. The definitions of, and the distinction between halogen bonding and halogen‐halogen interactions are provided. Self‐assembled networks formed at the solution/solid interface and at the vacuum‐solid interface, stabilized in part by halogen bonding, are discussed. Besides the broad classification based on the interface at which the systems are studied, the systems are categorized further as those sustained by halogen‐halogen and halogen‐heteroatom contacts.
Nanoporous supramolecular networks physisorbed on solid surfaces have been extensively used to immobilize a variety of guest molecules. Host-guest chemistry in such two-dimensional (2D) porous networks is a rapidly expanding field due to potential applications in separation technology, catalysis and nanoscale patterning. Diverse structural topologies with high crystallinity have been obtained to capture molecular guests of different sizes and shapes. A range of non-covalent forces such as hydrogen bonds, van der Waals interactions, coordinate bonds have been employed to assemble the host networks. Recent years have witnessed a surge in the activity in this field with the implementation of rational design strategies for realizing controlled and selective guest capture. In this feature article, we review the development in the field of surface-supported host-guest chemistry as studied by scanning tunneling microscopy (STM). Typical host-guest architectures studied on solid surfaces, both under ambient conditions at the solution-solid interface as well as those formed at the ultrahigh vacuum (UHV)-solid interface, are described. We focus on isoreticular host networks, hosts functionalized pores and dynamic host-guest systems that respond to external stimuli.
Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturised solid-state devices. Conventional MOF patterning methods suffer from a low resolution and poorly defined pattern edges. Here, we demonstrate for the first time resist-free, direct X-ray and e-beam lithography of MOFs. This process avoids etching damage and contamination, and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting highquality patterns have a record sub-50 nm resolution, far beyond the state of the art in MOF patterning and approaching the mesopore regime. The excellent compatibility of X-ray and e-beam lithography with existing microfabrication processes, both in research and production facilities, provides an avenue to explore the integration of MOFs in microelectronics further. This approach is the first example of direct lithography of any type of microporous crystalline network solid, and marks an important milestone in the processing of such materials.
Recent advances in bottom-up synthesis of atomically defined graphene nanoribbons (GNRs) with various microstructures and properties have demonstrated their promise in electronic and optoelectronic devices. Here we synthesized N = 9 armchair graphene nanoribbons (9-AGNRs) with a low optical band gap of ∼1.0 eV and extended absorption into the infrared range by an efficient chemical vapor deposition process. Time-resolved terahertz spectroscopy was employed to characterize the photoconductivity in 9-AGNRs and revealed their high intrinsic charge-carrier mobility of approximately 350 cm·V·s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.