Fibrosis is increasingly appreciated as a major player in adipose tissue dysfunction. In rapidly expanding adipose tissue, pervasive hypoxia leads to an induction of HIF1α that in turn leads to a potent pro-fibrotic transcriptional program. The pathophysiological impact of adipose tissue fibrosis is likely to play an equally important role on systemic metabolic alterations as fibrotic conditions play in the liver, heart and kidney. Here, we discuss recent advances in our understanding of the genesis, modulation and systemic impact of excessive extracellular matrix (ECM) accumulation in adipose tissue of both rodents and humans and the ensuing impact on metabolic dysfunction.
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and being overweight is a significant risk factor. The aim was to build an algorithm along with a scoring system for histopathologic classification of liver lesions that covers the entire spectrum of lesions in morbidly obese patients. A cohort of 679 obese patients undergoing liver biopsy at the time of bariatric surgery was studied. An algorithm for segregating lesions into normal liver, NAFLD, or nonalcoholic steatohepatitis (NASH) was built based on semiquantitative evaluation of steatosis, hepatocellular ballooning, and lobular inflammation. For each case, the SAF score was created including the semiquantitative scoring of steatosis (S), activity (A), and fibrosis (F). Based on the algorithm, 230 obese patients (34%) were categorized as NASH, 291 (43%) as NAFLD without NASH, and 158 (23%) as not NAFLD. The activity score (ballooning 1 lobular inflammation) enabled discriminating NASH because all patients with NASH had A ! 2, whereas no patients with A < 2 had NASH. This score was closely correlated with both alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (P < 0.0001, analysis of variance [ANOVA]). Comparison of transaminase levels between patients with normal liver and pure steatosis did not reveal significant differences, thus lending support to the proposal not to include steatosis in the activity score but to report it separately in the SAF score. In the validation series, the interobserver agreement for the diagnosis of NASH was excellent (j 5 0.80) between liver pathologists. There was no discrepancy between the initial diagnosis and the diagnosis proposed using the algorithm. Conclusion: We propose a simple but robust algorithm for categorizing liver lesions in NAFLD patients. Because liver lesions in obese patients may display a continuous spectrum of histologic lesions, we suggest describing liver lesions using the SAF score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.