To investigate the characteristics of the postulated carboxy terminal chain-folding initiation site in bovine pancreatic ribonuclease A (RNase A) (residues 106-118), important in the early stages of the folding pathway, we have engineered by site-directed mutagenesis a set of 14 predominantly conservative hydrophobic variants of the protein. The stability of each variant has been compared by pressure and temperature-induced unfolding, monitored by fourth derivative UV absorbance spectroscopy. Apparently simple two-state, reversible unfolding transitions are observed, suggesting that the disruption of tertiary structure of each protein at high pressure or temperature is strongly cooperative. Within the limits of the technique, we are unable to detect significant differences between the two processes of denaturation. Both steady-state kinetic parameters for the enzyme reaction and UV CD spectra of each RNase A variant indicate that truncation of hydrophobic side chains in this region has, in general, little or no effect on the native structure and function of the enzyme. Furthermore, the decreases in free energy of unfolding upon pressure and thermal denaturation of all the variants, particularly those modified at residues 106 and 108, suggest that the hydrophobic residues and side chain packing interactions of this region play an important role in maintaining the conformational stability of RNase A. We also demonstrate the potential of Tyr115 replacement by Trp as a non-destabilizing fluorescence probe of conformational changes local to the region.
At high temperature, recombinant hamster prion protein (SHaPrP(90-231)) undergoes aggregation and changes from a predominantly alpha-helical to beta-sheet conformation. We then applied high pressure (200 MPa) to the beta-sheet-rich conformation. The aggregation was reversed, and the original tertiary and secondary structures were recovered at ambient pressure, after pressure release. The application of a pressure of 200 MPa thus allowed studying the heat-induced equilibrium refolding in the absence of protein aggregation. Prion protein unfolding as a function of high pressure was also investigated. Simple two-state, reversible unfolding transitions were observed, as monitored by spectral changes in the UV and fluorescence of the hydrophobic probe 8-anilino-1-naphthalene sulfonate. However, these heat- and pressure-induced conformers differed in their unfolding free energy. At pressures over 400 MPa, strong thioflavin-T binding was observed, suggesting a further structural change to a metastable oligomeric structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.