Abstract:In plants, prenylation of metabolites is widely distributed to generate compounds with efficient defense potential and distinct pharmacological activities profitable to human health. Prenylated compounds are formed by members of the prenyltransferase (PT) superfamily, which catalyze the addition of prenyl moieties to a variety of acceptor molecules. Cell cultures of Hypericum calycinum respond to elicitor treatment with the accumulation of the prenylated xanthone hyperxanthone E. A cDNA encoding a membrane-bound PT (HcPT) was isolated from a subtracted cDNA library and transcript preparations of H. calycinum. An increase in the HcPT transcript level preceded hyperxanthone E accumulation in cell cultures of H. calycinum treated with elicitor. The HcPT cDNA was functionally characterized by expression in baculovirus-infected insect cells. The recombinant enzyme catalyzed biosynthesis of 1,3,6,7-tetrahydroxy-8-prenylxanthone through regiospecific C-8 prenylation of OPEN ACCESSMolecules 2015, 20 15617 1,3,6,7-tetrahydroxyxanthone, indicating its involvement in hyperxanthone E formation. The enzymatic product shared significant structural features with the previously reported cholinesterase inhibitor γ-mangostin. Thus, our findings may offer a chance for semisynthesis of new active agents to be involved in the treatment of Alzheimer's disease.
Pancreatic cancer features elaborate mechanisms of immune evasion. The potential of new immune molecules was explored to restore the antitumor immune response. If these immune molecules are associated with poor survival, specific drugs could take effect. Here, we analyze the expression of VISTA, LAG3, IDO, and TIM3 on tumor-infiltrating lymphocytes (TILs) and its impact on patient survival. We analyzed 153 pancreatic cancer patients from the prospectively managed database of the multicentered PANCALYZE study. Immunohistochemistry on a tissue microarray assessed VISTA, LAG3, IDO, and TIM3 expression of TILs from the patients undergoing primary resection. Complementarily, we analyzed publicly available transcriptomic data (n = 903). Successful completion of chemotherapy, and lymph node status were independent predictors of survival in the multivariate analysis of the clinicopathologic parameters. Fifteen tumors were exclusively VISTA-positive, thirteen tumors expressed VISTA together with TIM3, and ten tumors expressed VISTA together with IDO. Patients featuring tumors with high numbers of IDO-positive TILs had better patient survival (p = 0.037). VISTA, LAG3, and TIM3 expression did not correlate with survival. The analysis of publicly available data did not show survival differences. Tumors rarely co-express more than two immune molecules at the same time, and VISTA is most frequently co-expressed. Although IDO generally inhibits T-cell proliferation, a high expression of IDO was associated with improved survival. We expect immune checkpoint inhibitors against VISTA, LAG3, and TIM3 to be inefficient in a clinical application.
Intact SLN were not incorporated into the cells, i.e., C-6 was passively redistributed from SLN to lipophilic cellular compartments. C-6 was enriched up to a given limit in HCE-T cells within 5 min of contact with the dispersions both under static and under flow conditions. The C-6 delivery rate from liposomes was superior to that from SLN whereby the suspension exhibited the lowest rate. C-6 release rates were comparable for static and flow conditions. Alternate flushing with formulations and buffer revealed that cells accumulated C-6. The results suggest that combining microfluidics with live cell imaging provides a valuable option for in vitro studies of ocular drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.