Flow cytometry has become a highly valuable method to monitor minimal residual disease (MRD) and evaluate the depth of complete response (CR) in bone marrow (BM) of multiple myeloma (MM) after therapy. However, current flow-MRD has lower sensitivity than molecular methods and lacks standardization. Here we report on a novel next generation flow (NGF) approach for highly sensitive and standardized MRD detection in MM. An optimized 2-tube 8-color antibody panel was constructed in five cycles of design-evaluation-redesign. In addition, a bulk-lysis procedure was established for acquisition of ⩾107 cells/sample, and novel software tools were constructed for automatic plasma cell gating. Multicenter evaluation of 110 follow-up BM from MM patients in very good partial response (VGPR) or CR showed a higher sensitivity for NGF-MRD vs conventional 8-color flow-MRD -MRD-positive rate of 47 vs 34% (P=0.003)-. Thus, 25% of patients classified as MRD-negative by conventional 8-color flow were MRD-positive by NGF, translating into a significantly longer progression-free survival for MRD-negative vs MRD-positive CR patients by NGF (75% progression-free survival not reached vs 7 months; P=0.02). This study establishes EuroFlow-based NGF as a highly sensitive, fully standardized approach for MRD detection in MM which overcomes the major limitations of conventional flow-MRD methods and is ready for implementation in routine diagnostics.
Flow cytometric immunophenotyping has become essential for accurate diagnosis, classification, and disease monitoring in hemato-oncology. The EuroFlow Consortium has established a fully standardized "all-in-one" pipeline consisting of standardized instrument settings, reagent panels, and sample preparation protocols and software for data analysis and disease classification. For its reproducible implementation, parallel development of a quality assurance (QA) program was required. Here, we report on the results of four consecutive annual rounds of the novel external QA EuroFlow program. The novel QA scheme aimed at monitoring the whole flow cytometric analysis process (cytometer setting, sample preparation, acquisition and analysis) by reading the median fluorescence intensities (MedFI) of defined lymphocytes' subsets. Each QA participant applied the predefined reagents' panel on blood cells of local healthy donors. A uniform gating strategy was applied to define lymphocyte subsets and to read MedFI values per marker. The MedFI values were compared with reference data and deviations from reference values were quantified using performance score metrics. In four annual QA rounds, we analyzed 123 blood samples from local healthy donors on 14 different instruments in 11 laboratories from nine European countries. The immunophenotype of defined cellular subsets appeared sufficiently standardized to permit unified (software) data analysis. The coefficient of variation of MedFI for 7 of 11 markers performed repeatedly below 30%, average MedFI in each QA round ranged from 86 to 125% from overall median. Calculation of performance scores was instrumental to pinpoint standardization failures and their causes. Overall, the new EuroFlow QA system for the first time allowed to quantify the technical variation that is introduced in the measurement of fluorescence intensities in a multicentric setting over an extended period of time. EuroFlow QA is a proficiency test specific for laboratories that use standardized EuroFlow protocols. It may be used to complement, but not replace, established proficiency tests. © 2014 International Society for Advancement of Cytometry.
Multiple myeloma (MM) is one of the most prevalent hematological cancers worldwide, characterized by the clonal expansion of neoplastic plasma cells in the bone marrow (BM). A combination of factors is implicated in disease progression, including BM immune microenvironment changes. Increasing evidence suggests that the disruption of immunological processes responsible for myeloma control ultimately leads to the escape from immune surveillance and resistance to immune effector function, resulting in an active form of myeloma. In fact, one of the hallmarks of MM is the development of a permissive BM milieu that provides a growth advantage to the malignant cells. Consequently, a better understanding of how myeloma cells interact with the BM niche compartments and disrupt the immune homeostasis is of utmost importance to develop more effective treatments. This review focuses on the most up-to-date knowledge regarding microenvironment-related mechanisms behind MM immune evasion and suppression, as well as promising molecules that are currently under pre-clinical tests targeting immune populations.
CD8 T cells play a major role in antiviral immune responses. Their importance for progression to chronic hepatitis C and response to treatment are still unclear. To address these issues, hepatitis C virus (HCV)-specific CD8 T-cell responses were monitored, at the single-cell level, using HLA class I pentamers specific for HCV core and HCV NS3 epitopes, in 23 chronically infected patients during treatment with pegylated alpha interferon and ribavirin. Patients who presented a sustained-response to therapy had stronger HCV-specific CD8 T-cell responses at all time points studied. Moreover, there were clear differences in the phenotypes of these cells during therapy: in responder patients, terminally differentiated effector cells increased more rapidly, and their frequency was always higher than in nonresponder patients. Sustained-responder patients also showed a higher frequency of HCV-specific CD8 T cells producing cytotoxic factors. Overall, a late and inefficient differentiation process of HCV-specific CD8 T cells might be associated with lack of response to treatment. A better knowledge of the mechanisms underlying this impairment may be important for the development of new therapeutic strategies to maintain, restore, or increase CD8 T-cell effectiveness in chronic HCV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.