This research work comes from a real problem from Lisbon City Council that was interested in developing a system that automatically detects in real-time illegal graffiti present throughout the city of Lisbon by using cars equipped with cameras. This system would allow a more efficient and faster identification and clean-up of the illegal graffiti constantly being produced, with a georeferenced position. We contribute also a city graffiti database to share among the scientific community. Images were provided and collected from different sources that included illegal graffiti, images with graffiti considered street art, and images without graffiti. A pipeline was then developed that, first, classifies the image with one of the following labels: illegal graffiti, street art, or no graffiti. Then, if it is illegal graffiti, another model was trained to detect the coordinates of graffiti on an image. Pre-processing, data augmentation, and transfer learning techniques were used to train the models. Regarding the classification model, an overall accuracy of 81.4% and F1-scores of 86%, 81%, and 66% were obtained for the classes of street art, illegal graffiti, and image without graffiti, respectively. As for the graffiti detection model, an Intersection over Union (IoU) of 70.3% was obtained for the test set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.