Tumour metastasis is the main cause of cancer related deaths. Metastasis is an intricate multi-step process that requires the acquisition of several cancer cell features, including the modulation of tumour cell migration, adhesion, invasion, and immune evasion. Changes in the cellular glycosylation are associated with malignant transformation of cancer cells, tumour progression and ultimately, metastasis formation. Glycans have major impact on cellular signalling and on the regulation of tumour cell-cell adhesion and cell-matrix interaction. Glycans drive the interplay between the cancer cells and the tumour microenvironment. In this review, we summarize the roles of glycan alterations in tumour progression, such as acquisition of oncogenic features due to modulation of receptor tyrosine kinases, proteoglycans, cadherins and integrins. We also highlight the importance of key glycan binding proteins such as selectins, siglecs and galectins, which are pivotal in the modulation of immune response. An overview on glycans as cancer biomarkers is also presented.
The clinical performance of the therapeutic monoclonal antibody trastuzumab in the treatment of ErbB2-positive unresectable gastric cancer (GC) is severely hampered by the emergence of molecular resistance. Trastuzumab’s target epitope is localized within the extracellular domain of the oncogenic cell surface receptor tyrosine kinase (RTK) ErbB2, which is known to undergo extensive N-linked glycosylation. However, the site-specific glycan repertoire of ErbB2, as well as the detailed molecular mechanisms through which specific aberrant glycan signatures functionally impact the malignant features of ErbB2-addicted GC cells, including the acquisition of trastuzumab resistance, remain elusive. Here, we demonstrate that ErbB2 is modified with both α2,6- and α2,3-sialylated glycan structures in GC clinical specimens. In-depth mass spectrometry-based glycomic and glycoproteomic analysis of ErbB2’s ectodomain disclosed a site-specific glycosylation profile in GC cells, in which the ST6Gal1 sialyltransferase specifically targets ErbB2 N-glycosylation sites occurring within the receptor’s trastuzumab-binding domain. Abrogation of ST6Gal1 expression reshaped the cellular and ErbB2-specific glycomes, expanded the cellular half-life of the ErbB2 receptor, and sensitized ErbB2-dependent GC cells to trastuzumab-induced cytotoxicity through the stabilization of ErbB dimers at the cell membrane, and the decreased activation of both ErbB2 and EGFR RTKs. Overall, our data demonstrates that ST6Gal1-mediated aberrant α2,6-sialylation actively tunes the resistance of ErbB2-driven GC cells to trastuzumab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.