Summary Dothistroma needle blight (DNB), caused by Dothistroma septosporum and Dothistroma pini, and brown spot needle blight (BSNB), caused by Lecanosticta acicola, are some of the most serious and damaging foliar diseases of pines (Pinus spp.). Lecanosticta acicola is reported for the first time from Ireland and Portugal and confirmed from the Black Sea coast of Russia (Krasnodar region, Sochi). It has also been recovered from the first, and only, reported site in Latvia 4 years after efforts to eradicate it were undertaken. Dothistroma septosporum is reported for the first time from Ireland on Pinus sylvestris and Pinus radiata. It was also found in Comunitat Valenciana, Spain, and confirmed as the causal agent of the disease in Bulgaria. Dothistroma pini was found in Aragon, Spain, and in Arkansas, USA, where it was found on Pinus elliottii, a new host for this pathogen. A new ITS haplotype of D. septosporum is reported from the Bulgarian isolates and a new ITS haplotype of D. pini from the Arkansas isolates. These new country and regional reports extend the geographical and host range of these pathogenic fungi and continue a trend seen since the 1990s. Of particular concern are the geographically widespread new reports of L. acicola from the most north‐ and south‐westerly (Ireland and Portugal) to the most south‐easterly (Russia) regions in Europe, suggesting that not only is this pathogen continuing to spread in Europe but also is well adapted to a wide range of climatic conditions.
Monochamus beetles are the dispersing vectors of the nematode Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD). PWD inflicts significant damages in Eurasian pine forests. Symbiotic microorganisms have a large influence in insect survival. The aim of this study was to characterize the bacterial community associated to PWD vectors in Europe and East Asia using a culture-independent approach. Twenty-three Monochamus galloprovincialis were collected in Portugal (two different locations); twelve Monochamus alternatus were collected in Japan. DNA was extracted from the insects’ tracheas for 16S rDNA analysis through denaturing gradient gel electrophoresis and barcoded pyrosequencing. Enterobacteriales, Pseudomonadales, Vibrionales and Oceanospirilales were present in all samples. Enterobacteriaceae was represented by 52.2% of the total number of reads. Twenty-three OTUs were present in all locations. Significant differences existed between the microbiomes of the two insect species while for M. galloprovincialis there were no significant differences between samples from different Portuguese locations. This study presents a detailed description of the bacterial community colonizing the Monochamus insects’ tracheas. Several of the identified bacterial groups were described previously in association with pine trees and B. xylophilus, and their previously described functions suggest that they may play a relevant role in PWD.
Pine Wilt Disease (PWD) has a significant impact on Eurasia pine forests. The microbiome of the nematode (the primary cause of the disease), its insect vector, and the host tree may be relevant for the disease mechanism. The aim of this study was to characterize these microbiomes, from three PWD-affected areas in Portugal, using Denaturing Gradient Gel Electrophoresis, 16S rRNA gene pyrosequencing, and a functional inference-based approach (PICRUSt). The bacterial community structure of the nematode was significantly different from the infected trees but closely related to the insect vector, supporting the hypothesis that the nematode microbiome might be in part inherited from the insect. Sampling location influenced mostly the tree microbiome (P < 0.05). Genes related both with plant growth promotion and phytopathogenicity were predicted for the tree microbiome. Xenobiotic degradation functions were predicted in the nematode and insect microbiomes. Phytotoxin biosynthesis was also predicted for the nematode microbiome, supporting the theory of a direct contribution of the microbiome to tree-wilting. This is the first study that simultaneously characterized the nematode, tree and insect-vector microbiomes from the same affected areas, and overall the results support the hypothesis that the PWD microbiome plays an important role in the disease's development.
Research Highlights: Pestalotiopsis pini sp. nov. is an emerging pathogen on stone pine, Pinus pinea L., in Portugal. Background and Objectives: Stone pine is one of the most important forest tree species in Portugal and in the whole Mediterranean basin. Pestalotiopsis species are common endophytes, saprobes or pathogens in a variety of hosts and environments. The objective of the present study was to identify the Pestalotiopsis species associated with the symptomatic stone pine trees. Materials and Methods: Samples of stone pine trees showing shoot blight and stem necrosis were obtained from stone pine orchards and urban areas in Portugal, and the isolated Pestalotiopsis species were identified based on morphology and combined ITS, TEF and TUB DNA sequence data. Artificial inoculations on one-year-old stone pine seedlings were performed with the two species most frequently found in association with shoot blight disease. Results: Five Pestalotiopsis spp. were isolated. A taxonomic novelty, Pestalotiopsis pini is described, representing a new pathogen for stone pine. Conclusions: Pestalotiopsis species may represent a threat to the health of pine forests in the Mediterranean basin. Future research should be done in order to increase our knowledge about the potential impact of pestalotioid species in stone pine, in order to develop management strategies against these pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.