Deregulated cellular metabolism is a hallmark of tumors. Cancer cells increase glucose and glutamine flux to provide energy needs and macromolecular synthesis demands. Several studies have been focused on the importance of glycolysis and pentose phosphate pathway. However, a neglected but very important branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP). The HBP is a branch of the glucose metabolic pathway that consumes ϳ2-5% of the total glucose, generating UDP-GlcNAc as the end product. UDP-GlcNAc is the donor substrate used in multiple glycosylation reactions. Thus, HBP links the altered metabolism with aberrant glycosylation providing a mechanism for cancer cells to sense and respond to microenvironment changes. Here, we investigate the changes of glucose metabolism during epithelial mesenchymal transition (EMT) and the role of O-GlcNAcylation in this process. We show that A549 cells increase glucose uptake during EMT, but instead of increasing the glycolysis and pentose phosphate pathway, the glucose is shunted through the HBP. The activation of HBP induces an aberrant cell surface glycosylation and O-GlcNAcylation. The cell surface glycans display an increase of sialylation ␣2-6, poly-LacNAc, and fucosylation, all known epitopes found in different tumor models. In addition, modulation of O-GlcNAc levels was demonstrated to be important during the EMT process. Taken together, our results indicate that EMT is an applicable model to study metabolic and glycophenotype changes during carcinogenesis, suggesting that cell glycosylation senses metabolic changes and modulates cell plasticity.Altered metabolism represents the first known difference between cancer cells and normal cells (1). The Warburg effect consists of an increase of glucose uptake for producing energy by a high rate of glycolysis followed by lactic acid fermentation even under high oxygen tension ("aerobic glycolysis"). Understanding the metabolism of tumors remains a topic of intense study with important therapeutic potential (2, 3). Several advances in cancer metabolism research over past years have enhanced our understanding of how aerobic glycolysis and other metabolic shifts support the anabolic demands of high growth rate (4). Traditionally, the study of glucose metabolism usually focused on the use of glucose for energy needs. However, cancer cells use glucose in anabolic pathways that provide precursors for the synthesis of lipids, proteins, glycans, and DNA to satisfy the demands of growth and proliferation. Several studies have been focused on the importance of the pentose phosphate pathway (PPP), 3 to generate NADPH that ensures the antioxidant defenses of the cell and to generate the nucleotides in high demand or the use of intermediates of the glycolytic pathway to generate molecules such as lipids or amino acids (5). However, a neglected but integral branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP).Approximately 2-5% of glucose influx is directed to the HBP by the rate-limiting enzyme ...
Growing evidences indicate that aberrant glycosylation can modulate tumor cell invasion and metastasis. The process termed "epithelial-mesenchymal transition" (EMT) provides a basic experimental model to shed light on this complex process. The EMT involves a striking decline in epithelial markers, accompanied by enhanced expression of mesenchymal markers, culminating in cell morphology change and increased cell motility. Few recent studies have established the participation glycosylation during EMT. Studies now come into knowledge brought to light the involvement of a site-specific O-glycosylation in the IIICS domain of human oncofetal fibronectin (onfFN) during the EMT process. Herein we show that high glucose induces EMT in A549 cells as demonstrated by TGF-β secretion, cell morphology changes, increased cellular motility and the emergence of mesenchymal markers. The hyperglycemic conditions increased onfFN protein levels, promoted an up regulation of mRNA levels for ppGalNAc-T6 and FN IIICS domain, which contain the hexapeptide (VTHPGY) required for onfFN biosynthesis. Glucose effect involves hexosamine (HBP) biosynthetic pathway as overexpression of glutamine: fructose-6-phosphate amidotransferase increases mesenchymal markers, onfFN levels and mRNA levels for FN IIICS domain. In summary, our results demonstrate, for the first time that the metabolism of glucose through HBP promotes O-glycosylation of the oncofetal form of FN during EMT modulating tumorogenesis.
It's already well known that cancer cells increase glucose and glutamine uptake. The Hexosamine Biosynthetic Pathway (HBP) is highly dependent on both molecules and recent showed that cancer cells upregulate the HBP, including increased O‐GlcNAc levels, that we confirmed by immunohistochemistry. Two enzymes are responsible for the addition and removal of O‐GlcNAc (OGT and OGA, respectively). The transition of epithelial cells to mesenchymal cells (EMT) is crucial in metastasis of carcinoma cells by losing cellular polarity and increasing the cellular motility. In this work we used two approaches (Wound Assay and Colloidal Gold Assay) to investigate the role of O‐GlcNAc in cellular motility. Here, we showed that increase of O‐GlcNAc levels through OGA silencing or inhibition, increase the cell motility in alveolar epithelial cancer cells. Additionally, the reduction of O‐GlcNAc levels by OGT silencing showed a significant decrease the cell motility. In addition we showed increased levels of OGT and OGA during EMT induced by TGF‐β. These results suggest a role of O‐GlcNAcylation in the process of cell motility and may have implications in tumorigenesis. FAPERJ, CNPq
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.