The implications of weather and climate extremes on the viticulture and winemaking sector can be particularly detrimental and acquire more relevance under a climate change context. A four-member ensemble of the Regional Climate Model-Global Climate Model chain simulations is used to evaluate the potential impacts of climate change on indices of extreme temperature and precipitation, as well as on agroclimatic indices of viticultural suitability in the Douro Wine Region, Portugal, under current and future climate conditions, following the RCP8.5 anthropogenic radiative forcing scenario. Historical (1989–2005) and future (2051–2080) periods are considered for this purpose. Although model outputs are bias-corrected to improve the accuracy of the results, owing to the sensitivity of the climatic indicators to the specific bias correction method, the performance of the linear and quantile mapping methods are compared. The results hint at the importance of choosing the most accurate method (quantile mapping), not only in replicating extremes events but also in reproducing the accumulated agroclimatic indices. Significant differences between the bias correction methods are indeed found for the number of extremely warm days (maximum temperature > 35 °C), number of warm spells, number of warm spell days, number of consecutive dry days, the Dryness Index, and growing season precipitation. The Huglin Index reveals lower sensitivity, thus being more robust to the choice of the method. Hence, an unsuitable bias correction method may hinder the accuracy of climate change projections in studies heavily relying on derived extreme indices and agroclimatic indicators, such as in viticulture. Regarding the climate change signal, significant warming and drying trends are projected throughout the target region, which is supported by previous studies, but also accompanied by an increase of intensity, frequency, and duration of extreme events, namely heatwaves and dry spells. These findings thereby corroborate the need to adopt timely and effective adaptation strategies by the regional winemaking sector to warrant its future sustainability and enhance climate resilience.
The European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae) is considered to be the main pest in the vineyards of the Douro Demarcated Region (DDR) due to the economic losses it can cause. Damage is caused by the larvae of this pest feeding on grape clusters, rendering them susceptible to Botrytis cinerea in mid-season and leading to the development of primary and secondary rot at harvest. Understanding this pest´s behaviour in the region under future climate scenarios is an increasing challenge. Hence, the present study aims to assess the potential effects of two likely climate change scenarios (Representative Concentration Pathways, RCP4.5 and RCP8.5) on Lobesia botrana phenology, particularly at the beginning and at the peak of the three Lobesia botrana flights. Our findings show that the phenological events generally occur earlier in all locations and mostly during the long-term period of 2021–2080, being 7 to 12 days in advance in the RCP4.5 scenario, and 15 to 24 days in advance in RCP8.5, when compared to current values (2000–2019) and regardless of the flight number. These results suggest that a fourth complete flight is likely in the future, and that Lobesia botrana will become a tetravoltine species in the region. The flight (male catches) and infestation of Lobesia botrana over periods with daily temperatures above its upper limit of development (> 33 °C) were also analysed during the period 2000–2019 in the targeted sites. The upward trend in the number of days with maximum temperature above 33 °C tended to be accompanied by a decrease in the total number of male catches during the second and third flights, as well as a decrease in the percentage of attacked bunches by the second and third generations. Overall, climate change is expected to influence the phenology of this pest in the DDR.
The chestnut tree is an important forestry species worldwide, as well as a valuable food resource. Over recent years, Portugal has shown an increasing trend in chestnut tree area, as well as increases in production, hinting at the socioeconomic relevance of this agro-forestry species. In this study, bioclimatic indices are applied to analyse the spatial distribution of chestnut trees in mainland Portugal, namely growing degree days (GDD; 1900–2400 °C), annual mean temperature (AMT; 8–15 °C), summer days with maximum temperature below 32 °C (NTX), and annual precipitation (PRE; 600–1600 mm). These indices are assessed for the baseline (IBERIA01, 1989–2005) and future climates (EURO-CORDEX: 2021–2040, 2041–2060, and 2061–2080) under two forcing pathways (RCP4.5 and RCP8.5), also taking into account the chestnut tree land cover. For the baseline, the GDD showed only 10% suitability for chestnut tree cultivation in southern Portugal, whereas much higher values are found in the north of the country, and at higher altitudes (50–90%). For the AMT, higher elevation areas in northern Portugal show almost 100% suitability. Concerning NTX, the suitability reduces from the west (100–90%) to the east (40%). Regarding PRE, the suitability is heterogeneous throughout the territory, with areas under 50%. A new Chestnut Suitability Index (CSI) was then computed, which incorporates information from the four previous indices. The CSI reveals a suitability ranging from 100 to 75% in the north, while central and southern Portugal show values from 25 to 50%. For future climates, a progressive reduction in CSI was found, particularly for RCP8.5 and in the long-term period. Changes in bioclimatic conditions may restrict the 100% suitability to a narrow area in the north of the country. These reductions in chestnut bioclimatic suitability may have socio-economic and ecological implications for the management of the important agro-forestry species.
Wind is among the most important climatic elements. Its characteristics are determinant for a wide range of natural processes and human activities. However, ongoing climate change is modifying these characteristics, which may have important implications. Climatic changes on wind speed and direction, wind shear intensity, and helicity, over the 21st century and for 26 cities in the Iberian Peninsula, under the Representative Concentration Pathway (RCP) 8.5 anthropogenic forcing scenario, are assessed. For this purpose, the Weather Research and Forecasting (WRF) model was used, with initial and boundary conditions being obtained from simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM-LR) climate model and ERA-Interim reanalysis. Quantile-quantile bias correction was applied to the simulated data prior to subsequent analysis. Overall, the results hint at a reduction in the intensity of both near-surface and 850 hPa (approx. 5%) wind in the future. Nevertheless, for the 300 hPa level, a decrease in summertime wind speed is accompanied by a slight increase in the remaining months. Furthermore, significant increases in the number of occurrences of extreme wind events were also identified, mainly in northwestern Iberia. For wind shear, an intensity increase is projected throughout most of the year (approx. 5% in the upper quantiles), mainly in southwestern Iberia. Helicity is also projected to undergo a strengthening, mostly in summer months and over southwestern Iberia, with greater emphasis on events of longer duration and intensity. This study highlights some important projected changes in the wind structure and profile under future anthropogenic forcing. This knowledge may support decisions on climate change adaptation options and risk reduction of several major sectors, such as energy and aviation, thus deserving further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.