A microencapsulated feed additive composed by garlic, carvacrol and thymol essential oils (EOs) was evaluated regarding its protective effect in gills parasitized by Sparicotyle chrysophrii in Sparus aurata. A nutritional trial (65 days) followed by a cohabitation challenge with parasitized fish (39 days) were performed. Transcriptomic analysis by microarrays of gills of fish fed the EOs diet showed an up-regulation of genes related to biogenesis, vesicular transport and exocytosis, leukocyte-mediated immunity, oxidation–reduction and overall metabolism processes. The functional network obtained indicates a tissue-specific pro-inflammatory immune response arbitrated by degranulating acidophilic granulocytes, sustained by antioxidant and anti-inflammatory responses. The histochemical study of gills also showed an increase of carboxylate glycoproteins containing sialic acid in mucous and epithelial cells of fish fed the EOs diet, suggesting a mucosal defence mechanism through the modulation of mucin secretions. The outcomes of the in vivo challenge supported the transcriptomic results obtained from the nutritional trial, where a significant reduction of 78% in the abundance of S. chrysophrii total parasitation and a decrease in the prevalence of most parasitic developmental stages evaluated were observed in fish fed the EOs diet. These results suggest that the microencapsulation of garlic, carvacrol and thymol EOs could be considered an effective natural dietary strategy with antiparasitic properties against the ectoparasite S. chrysophrii.
From a general structural perspective, a mucosal tissue is constituted by two main matrices: the tissue and the secreted mucus. Jointly, they fulfill a wide range of functions including the protection of the epithelial layer. In this study, we simultaneously analyzed the epithelial tissue and the secreted mucus response using a holistic interactome-based multi-omics approach. The effect of the gilthead sea bream (Sparus aurata) skin mucosa to a dietary inclusion of spray-dried porcine plasma (SDPP) was evaluated. The epithelial skin microarrays-based transcriptome data showed 194 differentially expressed genes, meanwhile the exuded mucus proteome analysis 35 differentially synthesized proteins. Separately, the skin transcripteractome revealed an expression profile that favored biological mechanisms associated to gene expression, biogenesis, vesicle function, protein transport and localization to the membrane. Mucus proteome showed an enhanced protective role with putatively higher antioxidant and antimicrobial properties. The integrated skin mucosa multi-interactome analysis evidenced the interrelationship and synergy between the metabolism and the exuded mucus functions improving specifically the tissue development, innate defenses, and environment recognition. Histologically, the skin increased in thickness and in number of mucous cells. A positive impact on animal performance, growth and feed efficiency was also registered. Collectively, the results suggest an intimate crosstalk between skin tissue and its exuded mucus in response to the nutritional stimulus (SDPP supplementation) that favors the stimulation of cell protein turnover and the activation of the exudation machinery in the skin mucosa. Thus, the multi-omics-based interactome analysis provides a comprehensive understanding of the biological context of response that takes place in a mucosal tissue. In perspective, this strategy is applicable for evaluating the effect of any experimental variable on any mucosal tissue functionality, including the benefits this assessment may provide on the study of the mammalian mucosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.